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ABSTRACT: Validated degradation models are needed to ensure optimized operation of battery systems. This paper presents a 

simplified electric vehicle battery degradation model, which estimates the degradation based on vehicle usage daily values. The model 

quantifies calendar and cycle degradation based on battery temperature, State-of-Charge and odometer. The model results are compared 

against two datasets of 2.5 years obtained with a LEAF e-plus: on-board State-of-Health readings retrieved from the battery management 

system and capacity estimations assessed while monitoring battery full recharges. The results show that, after 2.5 years, the model is well-

aligned with the capacity estimations, while the on-board readings estimate the State-of-Health 1.3% lower. The obtained State-of-Health 

from the model after 2.5 years is equal to 95.6%, with calendar degradation being the major driver for the degradation cumulated so far.   

 

KEY WORDS: Battery pack; Calendar ageing; Cycle Ageing; Degradation models; Electric vehicles; State-of-Health; Testing.  

 

LIS OF VARIABLES AND PARAMETERS 

Variables 

t Time (s) 

SoC State-of-Charge (%) 

SoHread State-of-Health by the on-board readings (%) 

SoHmodel State-of-Health by the model (%) 

SoHest State-of-Health by the capacity estimation (%) 

Odo Odometer (km) 

Tb Battery temperature (°C) 

Vb Battery voltage (V) 

Ib Battery current (A) 

Pb Battery power (W) 

Eb Battery energy (Wh) 

Vch DC charger voltage (V) 

Ich DC charger current (I) 

Ech DC charger energy (Wh) 

Vaux Electric vehicle auxiliary voltage (V) 

Iaux Electric vehicle auxiliary current (I) 

Eaux Electric vehicle auxiliary energy (Wh) 

Enet Net energy charged in a lab session (Wh) 

qcal Cumulated calendar degradation (%)  

qcycl Cumulated cycle degradation (%)  

Q Battery Ah capacity (Ah)  

f Pre-exponential factor for calendar degradation 

η Driving specific energy consumption (Wh/km) 

∆tdriving Driving time in a specific period (s) 

Parameters 

Qnom Battery nominal Ah capacity equal to 176.4 Ah  

Vnom Battery nominal voltage equal to 350.4 V  

Enom Battery nominal energy equal to 61.8 kWh  

Ea Activation energy equal to 24.5 kJ/mol 

R Gas constant equal to 8.314 J/(mol·K) 

a Empirical coeff. equal to 8.6*10-6 1/(Ah·K2) 

b Empirical coeff. equal to 5.1*10-3 1/(Ah·K) 

c Empirical coeff. equal to 0.76 1/(Ah) 

d Empirical coeff. equal to 6.7*10-3 1/(K·s) 

e Empirical coeff. equal to 2.34 s 

 

1. INTRODUCTION 

1.1 Background  

Electric vehicle (EV) is becoming a dominant technology in the 

transportation sector. Its optimal usage and integration in the 

electric grid have been widely assessed in a large variety of studies 

[1]. Battery degradation, however, remains a major concern for 

electric vehicle users: proper understanding and quantification of 

its main drivers can enable optimized operation and charging 

process [2]. Moreover, it can also facilitate the usage of the battery 

for services not strictly related to driving, such as vehicle-to-grid 

(V2G) [3], [4]. In power system applications, it is common to use 

simplified battery pack models to reduce simulation time and 

model complexity. This is also because cells within a battery pack 
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may not always experience identical conditions [5]. As a result, 

degradation at the pack level may not necessarily correspond 

directly to the degradation of individual cells [6]. Traditionally, 

battery degradation is divided into cycle and calendar, with the 

first one driven by temperature, discharge rate and cycles, while 

the latter being dominated by time, temperature and SoC [7]. 

Despite the literature providing different models of single battery 

cells, validated battery pack models are scarce.  

 

1.2 Objectives and contributions 

The objective of the paper is to present a simplified EV battery 

degradation model that can capture the overall trend without 

requiring extensive datasets. The model is validated against:  

• on-board State-of-Health readings retrieved from the battery 

management system, using the method presented in [8];  

• capacity estimation obtained while monitoring battery full 

recharges, using the methodology presented in [9].  

The overall workflow to validate the model is presented in Fig. 

1, along with data and measurements utilized in each step. The 

figure also serves as a guide for the rest of the paper. Section 2.1 

discusses the data acquired through the OBD-II reader and an 

application named Leaf Spy. Data acquired via a Hioki datalogger 

of the DC charger used to perform the capacity estimations is 

discussed in Section 2.2. The degradation model is presented in 

Section 3, while the capacity estimation method is summarized in 

Section 4. In Section 5, the comparison between State-of-Health 

output of the model, the one derived by the capacity estimations 

and the one retrieved by the Leaf Spy is reported.  

 

 

Fig. 1. Model validation workflow and paper structure.  

 

2. DATA ACQUISITION 

2.1. EV on-board data 

The Leaf Spy application allows for the acquisition of second-

based measurements of a large set of quantities, retrieved through 

an OBD-II reader. Although all driving sessions have been 

recorded from the vehicle, to limit the dataset and make the 

method easier to apply only two instances from each day are used: 

one in the morning before the car is being driven and one in the 

evening before the car is being parked for the night. For the 

modelling part, the following quantities are mainly relevant: time, 

SoC, odometer, battery temperature. For the capacity 

measurement, the following two quantities are considered 

additionally: battery voltage and current. 

As previously presented in [8], a series of key quantities is 

acquired from the battery management system (BMS), including 

SoH readings. Table 1 reports battery usage indicators like mean 

SoC and Tb along with the distance driven for the 90-day periods.  

 

Table 1. Battery pack key usage indicators 

Periods SoHread  

 

SoHread 

reset 

Mean 

SoC 

Mean Tb. 

(ºC) 

Driven 

distance (km) 

27/10/20 

25/01/21 

100.00% 

99.46% 

- 49% 8.6 2631 

25/01/21 

25/04/21 

99.46% 

99.25% 

-0.00% 60% 6.8 3036 

25/04/21 

23/07/21 

99.32% 

98.77% 

+0.07% 58% 19.5 4647 

24/07/21 

21/10/21 

99.39% 

99.04% 

+0.62% 66% 18.8 3968 

23/10/21 

19/01/22 

97.35% 

97.25% 

-1.69% 61% 8.2 3356 

23/01/22 

21/04/22 

95.50% 

95.41% 

-1.75% 62% 7.4 3227 

22/04/22 

19/07/22 

95.40% 

95.07% 

-0.01% 63% 19.4 5079 

20/07/22 

17/10/22 

93.93% 

93.59% 

-1.14% 58% 19.8 4796 

17/10/22 

14/01/23 

94.22% 

94.14% 

+0.63% 61% 8.5 3077 

16/01/23 

18/03/23 

(ongoing) 

94.34% 

94.32% 

+0.20% 55% 5.1 1605 

 

The 90-day window is chosen to highlight the recurring SoHread 

resets performed by the vehicle BMS. Over the 2.5-year period of 

usage of the EV, the average battery temperature stands at 12.6 °C 

against an average ambient temperature of 9.0 °C. Charging 

processes avoid high SoC for long periods and are mostly based 

on slow charging. A time weighted average SoC equal to 61% is 

observed along with a total driven distance of 35538 km. 

                             

                     

             

 

                 

           

                            

                 

             

     

   

                                                                                      

            

        

                   

           

             

   

   

  

   

  

  

    

    

 

 



EVTeC 2023 

6th International Electric Vehicle Technology Conference 2023 

 

Copyright © 2023 Society of Automotive Engineers of Japan, Inc. 

The daily breakdown of the driven distance is reported in Fig. 2. 

The average distance per day is equal to 42 km and for 135 days 

out of the 838 days analyzed the car was not driven. For 821 days 

out of 838, the car drove less than 200 km/day, which means that 

fast charging sessions did mostly happen in the remaining 17 days, 

when the daily driven distance was more than 200 km.  

 

Fig. 2. Daily distance driven between 01/12/2020 (the day that 

the car was registered in Denmark) and 18/03/2023. 

 

2.2. DC charger data  

Every 3-4 months, the car is driven to the laboratory to perform 

capacity estimations: the EV is completely discharged until the 

minimum voltage allowed by the BMS is reached (see Fig. 3). 

 

 

Fig. 3. The LEAF e-plus under test in the laboratory at DTU. 

 

Afterwards, a monitored recharge takes place: the DC power 

used to charge the vehicle is measured at the charger terminal. The 

power needed to supply the auxiliary systems of the EV is 

separately measured and is subtracted from the total to assess 

solely the energy used to recharge the main battery. Second-based 

values from the DC charger and from the 12 V bus of the EV are 

measured with dedicated DC voltage and current clamps and 

acquired through a Hioki datalogger. 

 

3. DEGRADATION MODEL 

3.1. Model structure  

The degradation model, realized in Matlab-Simulink, accounts 

separately calendar and cycle degradation and is derived from the 

formulation presented in [10].  

 

Fig. 4. Synthetic overview of the degradation model. 

 

Calendar degradation is calculated by using battery temperature 

and SoC: two values per day are used and are linearly interpolated 

over time. Since only average values are considered, charge and 

discharge processes taking place throughout the day are not 

captured. This assumption is made to limit the simulation time of 

the model without compromising the validity of the results, 

considering that calendar degradation dynamics evolve over long 

time horizons.  

Cycle degradation is, instead, based on the daily distance driven, 

in km, which is then used to assess the corresponding energy 

consumed, in kWh. The model further considers the temperature 

of the battery pack. The effect of repeated fast charging on both 

temperature and energy intensity is not fully captured. However, 

when active cooling is not present, as in the case of the LEAF, the 

battery temperature will remain high also few hours after the last 

fast charge [8]. Whereas during low-power charging sessions, the 

model will not lose accuracy since the temperature is marginally 

affected. Degradation values, qcal and qcycl, are used to compute the 

actual battery capacity, Q, in Ah, and the normalized quantity, 

SoHmodel: 

 

 𝑄 = 𝑄𝑛𝑜𝑚 · (100% − 𝑞𝑐𝑎𝑙 − 𝑞𝑐𝑦𝑐𝑙) (1) 

 

 𝑆𝑜𝐻𝑚𝑜𝑑𝑒𝑙 = 100% − 𝑞𝑐𝑎𝑙 − 𝑞𝑐𝑦𝑐𝑙  (2) 

 

3.2. Calendar degradation  

Calendar degradation is based on Arrhenius formulation, to 

consider temperature dependency. The resulting cumulated 

degradation, expressed in percentage, is computed as follows: 
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𝑞cal =  

1

∆𝑡
∫ (𝑓 · 𝑒𝑥𝑝

−𝐸𝑎
𝑅∙𝑇𝑏 · √𝑡)

− (𝑓 · 𝑒𝑥𝑝
−𝐸𝑎
𝑅∙𝑇𝑏 · √𝑡 − ∆𝑡) 𝑑𝑡, 

(3) 

 

where ∆t is equal to 1 second, while t is measured in days. The 

battery temperature, Tb, is reported as absolute temperature. The 

pre-exponential factor, f, is based on the piecewise formulation 

reported in Table 2 and is derived from experimental estimations 

for NMC cells, presented in [11]. Several trends can be observed: 

a rising value for SoC until 30%, followed by a rather constant 

area until 60%, where the increase of the pre-exponential factor, 

and therefore calendar degradation, is limited. Between 60% and 

70%, there is a steep increase, which is again followed by another 

rather constant area between 70% and 90%.  

 

Table 2. Pre-exponential factor as a function of SoC 

SoC 0% 10% 20% 30% 40% 

f 1500 2000 2500 3000 3100 

50% 60% 70% 80% 90% 100% 

3100 3600 6100 6100 6500 7400 

 

This means that keeping a low SoC helps the battery to preserve 

its capacity. The effects of SoC and battery temperature are 

graphically presented in Fig. 5 over a period of 10 years.  

 

Fig. 5. SoH based on pure calendar degradation under various 

SoC and at two constant temperatures (25 °C and 10 °C). 

Additional degradation caused by cycles is not considered in 

this case. Besides the influence of SoC levels, it is clear how high 

temperature negatively affects lifetime. If one looks at the purple 

curves in the two plots (SoC = 65%), it can be seen how the SoH 

at the 10-year mark goes from 91% at 10 °C down to 86% at 25 °C 

and would get further down to 76% if the battery was constantly 

kept at 40 °C. 

 

3.2. Cycle degradation  

Cycle degradation is based on the following formulation, where 

cumulated degradation expressed in percentage is reported: 

 

 
𝑞cycl = ∫(𝑎 · 𝑇𝑏

2 + 𝑏 · 𝑇𝑏 + 𝑐)

· 𝑒𝑥𝑝
(𝑑·𝑇𝑏+𝑒)·

𝐼𝑏
𝑄 𝑑𝑡 

(4) 

 

With battery temperature, Tb, reported in absolute values; actual 

battery capacity, Q, reported in Ampere-second and by 

considering only discharging currents for Ib. Coefficients reported 

in equation (2) are based on the measurements described in [12].  

Since this paper intends to further simplify the formulation for 

cycle degradation by only using daily driving measurements, the 

battery current, Ib, used in (4) is derived from odometer readings. 

By knowing the driven distance during a specific day and the 

related driving specific energy consumption, it is possible to 

compute the energy used during the driving session. Knowing the 

driving time during the period and given the battery pack nominal 

voltage, Vnom, the current can be obtained as indicated in (4): 

 

 
𝐼b =

𝑂𝑑𝑜 · 𝜂

∆𝑡𝑑𝑟𝑖𝑣𝑖𝑛𝑔
∙

1

𝑉𝑛𝑜𝑚
 (5) 

 

The effects of driven distance and battery temperature are 

graphically presented in Fig. 6 over a period of 10 years. An 

average driving specific energy consumption  η  of 180 Wh/km is 

considered. Additional degradation caused by calendar is not 

accounted for in this case. It is clear how cycle degradation plays 

a minor role in the overall degradation. Under ideal temperature, 

which for cycle degradation is 25 °C, the cumulated wear 

predicted by the model is expected to be less than 1% after 10 years, 

even when considering a very intense driving usage of 50000 

km/year, which roughly corresponds to 150 full cycles for the 

61.8-kWh battery investigated. 

Colder and higher temperatures negatively affect cycle 

degradation: with a battery temperature of 10 °C, cycle 

degradation gets five times larger. As discussed in [13], cycle 

degradation has a quadratic dependency on temperature with a 

minimum around 25 °C: degradation at 10 °C is as high as at 40 °C, 

therefore, the lower plot of Fig. 6 gives a good indication of what 

the cycle degradation could be with a temperature of 40 °C. 
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Fig. 6. SoH based on pure cycle degradation with various yearly 

driving and at two constant temperatures (25 °C and 10 °C). 

 

It is worth noting how, on average, cars in Europe are driven 

between 9000 and 15000 km/year, depending on the country. This 

means that even under intense driving conditions, the battery could 

still be used for other purposes such as V2G applications, without 

considerable downside from a degradation perspective.  

 

4. CAPACITY ESTIMATION 

4.1. Capacity estimation method  

As mentioned in Section 2.2, the EV is subject to regular full-

charging sessions to estimate the available charging capacity. 

During the charging session, the following quantities are 

calculated based on the measurements acquired by the datalogger: 

charged DC energy, and energy consumed in the auxiliary.  

The energy provided by the DC charger, Ech, is computed by 

integrating over time the measured Vch and Ich, provided by the 

Hioki datalogger. The energy consumed by the EV auxiliary, Eaux, 

is computed by integrating over time the respective voltage and 

current measured at the 12 V bus, acquired by the Leaf Spy. The 

net energy charged is therefore defined as the difference between 

Ech and Eaux. The resulting value is finally normalized by the 

battery nominal capacity, Enom, to obtain SoHest. 

Throughout the charging sessions, also the following quantities 

are recorded to ensure consistency and replicability; however, they 

are not used to modify the final SoHest: battery temperature, 

voltage and SoC. Specifically, battery temperature, although it 

cannot be actively controlled, is observed to ensure consistency 

among the different sessions. To warm up the battery in winter 

months, the measurements were planned during non-particularly 

cold days and the EV was driven for 2 hours on the highway. This 

was also needed to discharge the battery to approximately 10-15% 

SoC, before having the final discharge by using the onboard 

heating for the following 3-4 hours inside the laboratory. In this 

way the battery had enough time to reach at least 14 °C. By the 

end of the charging session, which normally lasts 8 hours, the 

battery reached 24 °C. Finally, to keep at a minimum the influence 

of charging losses inside the battery, a 23-A DC charger is used, 

which, compared to the battery nominal capacity of 176.4 Ah, 

implies a C-rate of 0.13. Details on the capacity measurement 

technique applied on different car types are available in [9]. 

 

4.2. Capacity estimation results 

Table 3 summarizes the most relevant quantities acquired 

during the capacity estimation sessions. The battery voltage, Vb, at 

the beginning of the charging session could not always be kept at 

the same value, because in the last few percentage points of SoC, 

the cells, which are normally balanced in the range of 10-20 mV, 

tend to become unbalanced (see Fig. 7).  

As discussed in [8], the battery pack consists of triplets of cells, 

each of 58.8 Ah, wired in a series of 96, for a total of 288 cells. As 

soon as the first triplet reaches 2.85 V, the BMS prevents further 

discharge. However, as indicated in Table 3, normally the voltage 

ends up between 286 and 302 V. The final voltage at the end of 

the session is more predictable as the cells will be charged until 

reaching a value between 4.18 V and 4.20 V, therefore the overall 

battery voltage will be between 402 V and 403 V. The 

corresponding minimum SoC ranges between 0% and 2%, while 

the maximum between 96% and 98%. Finally, the fact that not the 

whole 100% SoC is made available for the charging session is not 

considered for the sake of determining SoHest. 

 

a)  

b)  

Fig. 7. The 96 cell triplet voltages displayed at the end of a 

discharging session (a) and at the end of a charging session (b). 
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Table 3. Summary results of the capacity estimations. 

Date 18/12/20 23/07/21 20/08/21 17/09/21 22/10/21 22/02/22 31/03/22 06/08/22 27/10/22 02/02/23 

SoC start 1.74% 1.57% 2.41% 1.76% 0.50% 0.00% 0.00% 0.51% 1.13% 0.60% 

SoC end 96.54% 96.20% 96.55% 96.87% 96.22% 96.21% 96.15% 98.12% 97.93% 96.94% 

Vb start (V) 302.7 299.2 287.7 288.5 291.7 291.4 290.4 286.4 288.4 288.5 

Vb end (V) 402.7 402.5 403.0 402.8 402.9 402.9 402.9 403.2 403.2 403.2 

Tb start (°C) 19.0 29.1 24.9 26.4 18.0 17.5 15.3 25.3 19.2 14.3 

Tb end (°C) 26.6 32.7 29.9 31.1 25.6 24.8 24.1 30.7 26.3 22.8 

Charge duration 08:07 08:00 07:54 07:52 07:50 08:02 08:02 08:00 07:44 07:54 

Ech (Wh) 62224 60944 61401 60792 60662 60531 60993 60432 60387 60338 

Eaux (Wh) 1084 985 1000 1069 1032 1042 1113 1054 1021 1000 

Enet (Wh) 61140 59959 60401 59723 59630 59489 59880 59378 59366 59338 

SoHest  98.92% 97.01% 97.72% 96.62% 96.47% 96.24% 96.88% 96.07% 96.05% 96.00% 

 

A graphical overview of the battery key quantities like, current, 

voltage, power and SoC measured during the charging session 

taking place on 02/02/2023 are reported in Fig. 8 and Fig. 9.  

 

Fig. 8. Measured battery current and voltage. 

 

The charging current is kept at 23 A until the SoC reaches 92%, 

at that point the topping phase begins, and the voltage slowly 

increases from 400 V to 402 V, while the current decreases until it 

reaches 2 A, with a SoC around 96%. Here, the final tail of the 

charging curve is performed by using the on-board AC charger. 

Less than 400 Wh are charged in the last phase (highlighted in red 

in the first plot of Fig. 8). The charging power starts at 6.7 kW at 

the very beginning, and it peaks at 9.2 kW before the charging 

session changes from constant current to constant voltage mode. 

The SoC increases linearly as long as the current is constant, while 

the increase gets progressively slower during the constant voltage 

mode. Further details on the charging modes of the LEAF are 

provided in [14]. 

 

Fig. 9. Measured battery power and SoC. 

 

Finally, Fig. 10 displays air and battery temperature from three 

different sensors inside the pack. When the EV entered the lab at 

9:20, the battery temperature was at 7 °C and it slowly increased 

until 14 °C during the following 3 hours, when completing the 

discharging phase. The ambient temperature in the laboratory was 

kept constant at 21 °C. Interestingly, when the charging session 

started at 12:20, the battery temperature dips slightly in the first 

hour, before Joule losses take over and, together with the 

contribution from surrounding environment, contribute to the 

heating of the battery pack.  

 

Fig. 10. Measured air and battery temperatures. 
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5. DEGRADATION COMPARISON 

The degradation estimated by the model is here discussed and 

compared with the one obtained by capacity estimations and on-

board readings. The upper plots in Fig. 11 report the daily values 

acquired through the OBD-II for battery temperature, SoC and 

odometer, which are used to feed the degradation model. The 

lower plot shows the comparison between the model output in red, 

the on-board readings in blue and the measured capacity in green 

circles. The capacity values have an uncertainty of ±1% due to the 

measurement equipment.   

The results show that, after 2.5 years, the model is well-aligned 

with the capacity estimations, while the on-board readings 

estimate the State-of-Health 1.3% lower. However, it is unclear to 

the authors how reliable the measurements from the OBD-II reader 

are, since they are provided by a third-party application. Another 

possible source of deviation can be caused by the estimation 

algorithm itself, which could be more conservative by 

overestimating the degradation.  

It is worth reminding that, although the LEAF e-plus nominal 

capacity is 61.8 kWh, the car has a declared net capacity of 56 

kWh. This implies that if 100% SoH is assigned to 61.8 kWh, once 

SoH reaches 90.6%, the battery capacity will be equal to 56 kWh. 

One could argue whether 56 kWh should be taken as the starting 

point and therefore be assigned a SoH equal to 100%. If this is the 

case, however, it would create a problem in using the capacity 

estimation as a comparison, since it would lead to a SoH larger 

than 100%: the last capacity value obtained at the end of the 

investigated period is 96.0%, which is equal to 59.3 kWh. 

Finally, it is interesting to highlight how the on-board 

degradation algorithm has recurring major updates every 90 days, 

as already pointed out in [8]. 

 

 

Fig. 11. Historical values used to feed the degradation model: Tb (top left), SoC (top center), Odo (top right). Air temperature is reported 

in the first plot just for comparison with the battery temperature, though it is not used in the model. State-of-Health comparison between 

model, on-board readings, and capacity estimations (lower plot).  

 

6. CONCLUSION AND FUTURE WORK 

The paper discussed and validated a simplified EV battery 

degradation model based on sparsely populated datasets. The 

model relies on two daily measurements of battery temperature, 

SoC and odometer. The model has been described in analytical 

terms and compared against two datasets of 2.5 years: on-board 

SoH readings retrieved from the battery management system, and 

capacity estimation obtained while monitoring battery full charges. 
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The results show that, after 2.5 years, the model is well-aligned 

with the capacity estimations, while the on-board readings 

estimate the State-of-Health 1.3% lower.  

Furthermore, a sensitivity to the amount of km driven per year 

has been presented to strengthen the argument that for EVs, the 

main driver for degradation is calendar, while cycle plays a minor 

role. This conclusion should help to build confidence in the 

possibility of extending the usage of the EV not just for driving 

purposes but also for V2G applications, like the ones described in 

[15] and [16]. Moreover, the presented calendar degradation 

characteristics, highlighted how degradation progresses per SoC 

areas. This specific behaviour can be for instance used in assessing 

the optimal trade-off between a smart charging strategy that take 

advantage of local renewable energy and the corresponding 

additional wear caused by prolonged high SoC levels.  

Finally, we wish to conclude the paper by stressing how both 

calendar and cycle degradation characteristics have been based on 

cells with similar NMC chemistry, but different size and shape. As 

demonstrated by the experimental results, this does not limit the 

validity in the approach. Future activities will extend the validation 

of the model over longer periods, as well as quantify the additional 

degradation caused by V2G services.   
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