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ABSTRACT: The braking function of an electric vehicle can be implemented with both friction brakes and electric motors,

which require a suitable control strategy for their coordinated operation. Many previous studies on this topic have focused on

conventional serial or parallel brake control strategies. In this paper, we present a different approach to brake torque blending

control based on a motor efficiency map and an improved single pedal control strategy based on vehicle behavior prediction.

In this strategy, the regenerative braking is prepared for activation when the controller predicts a deceleration mode. The motor

efficiency map of the test model was analyzed and optimized in this way. An artificial neural network was selected to

implement an advanced braking strategy. Standardized driving cycles with three different driver profiles were used to train

and evaluate the neural network. The results show that this approach significantly improves the vehicle’s efficiency. For the

WLTP cycle, the proposed strategy can reduce the average energy consumption by 4%, at which the energy recovered has

been increased by 9%. For the HWFET cycle, the recovered energy could be increased up to 24%.

KEY WORDS: electric vehicle, regenerative braking, artificial neural network, electric motor.

1. INTRODUCTION

Although electric motors are capable of regenerating energy
during braking, conventional friction brakes are still installed in
electric vehicles to ensure braking performance and fault-tolerant
operation. 2 This requires appropriate control strategies for
coordinated operation of both braking systems.

Currently, serial and parallel architectures exist for most
regenerative braking control strategies.  The main difference
between parallel and serial approaches is that in the parallel
architecture a specific braking torque ratio between the friction
braking system and the electric motor is specified. In the serial
strategy, the maximum possible braking torque of the electric
motor is used as a constant, and the friction braking system is
activated only when needed. ¥

Some previous studies have shown that both strategies work
differently depending on the maneuvering conditions. For
example, the article ® shows 6-12% better results for the serial
control. However, in the article ©® the parallel strategy shows better
performance under certain maneuvers and operating conditions.
This can be explained by the fact that the efficiency of the electric
motor is not constant under different load conditions.

In this paper, a different strategy is proposed based on floating

mixing ratio control, which realizes separate management of the

two braking systems depending on the motor efficiency map. This
strategy will later be referred to as "floating".

It should also be mentioned that some strategies aim to improve
the braking efficiency not only by regeneration, but also by
reconfiguring the propulsion system or adjusting its parameters to
the maneuvering conditions ®, which can lead to a reduction in
the total power consumption of the electric vehicle. For example,
in work ©), the powertrain configuration is adapted to the driving
conditions based on the prediction of the vehicle behavior using
Markov chains. Another example is the work 9, which deals with
the prediction of the speed profile using neural networks.

In this work, advanced regenerative braking control based on

vehicle behavior prediction is also proposed.

2. Controller Design

2.1. Target vehicle

The experimentally verified vehicle model used in this study is
based on an all-wheel drive sport utility vehicle (SUV) with a total
mass of 2857 kg. The powertrain is implemented with in-wheel
motors (IWM). The IWM parameters are given in Table 1. The
vehicle systems were first tested on the appropriate dynamometric
and component test rigs to produce highly realistic models,
including the electrohydraulic decoupled braking system model,
vehicle body inertia model, suspension kinematics model, vehicle
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aerodynamic model, IWM and electric powertrain models, and tire
dynamics model. The models were then implemented in a co-
simulation environment consisting of the Simcenter Amesim and
MATLAB/Simulink software. The regenerative controller was
designed in MATLAB/Simulink.

Table 1 Motor Specifications

Nominal supply voltage 370 v DC
Max. Torque (velocity, current) (3001r2[?r(1)1 ’\ég]o A)
Max. Power (torque, velocity) (1500 ll\llrg k;/(\)lo rpm)
Max. speed (no-load) 425V DC 1516 rpm
Max. electric motor efficiency 94%

2.2. Proposed controller architecture
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Fig. 1 Controller flowchart.

The control unit is constructed according to Fig. 1 with the
following parameters: Pb - brake pedal position, Pa - accelerator
pedal position, Tm - motor torque, v(t) - current velocity of the
model, v(t+1) - predicted velocity of the model in 1 second,
v(t1...t10) - an array of data on the previous behavior of the vehicle,
Td - required torque, To - optimal regenerative torque, Tm - torque
exerted by motor, Tf - torque generated by the friction brake
system, vw - wheel velocity. The amount of energy recovered
depends mainly on two parameters: the torque on the wheel and
the speed of the IWM rotor. However, this parameter is also
affected by the efficiency of the motor, which is different for
negative torque (i.e. braking torque). Therefore, it is necessary to
use the efficiency map of the motor as a function of the motor
efficiency at certain rotor velocities and torques, Fig. 2.

It is also necessary to find a condition for using the maximum
motor efficiency. For the proposed strategy, the efficiency map

was optimized using the Gradient descent method.
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Fig. 2 Motor efficiency when braking a vehicle model.

Thus the optimization task is defined as follows.

MAXgemanaw, (Energy[Torque, velocity, ef ficiency])
For the driver's current deceleration demand, the optimization
looks for the maximum energy recovered as a function of three
variables: torque, wheel speed, and electric motor efficiency under

current conditions.

2.3. Formulation of the braking control

According to the proposed strategy, regenerative braking is
applied only when the vehicle would continue to decelerate. When
the driver is about to release the pedal and maintain the previous
velocity, the regenerative brake should not be activated. To
implement this method, it was decided to predict the speed of the
vehicle. In this study, it is proposed to predict the velocity using
an artificial neural network based on the previous velocity profile
of the vehicle.

The forward prediction time should be several times faster than
the response time of the braking system, in which it is possible to
request the required braking torque. An average value of 1 second
was chosen to predict the behavior of the vehicle.

The data available to create the neural network prediction may
also be limited. For this reason, it was decided to set the length of
the maneuver between 4 and 20 seconds. This means that the data
set consists of samples recorded at a rate of 1 per second, and each
sample contains between 4 and 20 values, depending on the case.

Since the number of available artificial neural network
architectures is very large, different types have been studied and
tested. Recurrent neural networks (RNNSs) are designed to process
sequential data and are used for time series prediction. They use
information from the sequence and are therefore better able to
work with patterns. The task described does not require the
analysis of very long sequences, so it is possible to use a simpler
cell type. However, a simple RNN is more sensitive to the
vanishing gradient problem, which negatively affects what is
known as short-term memory. The advantage of Gated Recurrent
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Units (GRUSs) and Long Short-Term Memory (LSTM) cells over
a simple RNN architecture is that they reduce the probability of
the vanishing gradient problem. When choosing between GRU
and LSTM, it should be noted that due to the structural
characteristics of GRU, it is possible to achieve faster prediction
compared to LSTM by reducing the number of computations,
which is crucial when using the predicted information in a
complex system such as an ECU in a vehicle. Considering this, the
GRU architecture has been shown to be the most suitable for
vehicle behavior prediction. 19

In this study, an artificial neural network is used to implement
vehicle braking before the driver presses the brake pedal.

Embedded Keras libraries with a number of 2 to 28 neurons on
two layers and three different architectures were used to
implement the neural network. Training was performed by
backpropagation, specifically Levenberg-Marquardt training.
Performance measures were compared over 163 training trials

with different numbers of neurons.

3. Experimental results

3.1. Motor efficiency optimization

The torque optimization experiments were performed using the
real-time cosimulation with the high-fidelity models created as a
result of testing the relevant hardware components. The controller
was implemented on the real-time vehicle model according to the
algorithm (Figure 1). Three types of braking tests were performed:
parallel regeneration mode, serial regeneration mode, and braking
with a variable blending factor (based on the efficiency map). In
this test, the vehicle accelerates to a velocity of 50 km/h, maintains
this velocity for 10 seconds, and then brakes at a specific brake
pedal position. In the study, the brake tests were conducted at four
pedal positions: 20%, 40%, 50%, and 70% of full pedal travel. The
results of the tests are shown in Figure 3.
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Fig. 3 Comparison of regenerated energy with three different

strategies at different brake pedal positions.

Comparing the experimental results at different brake pedal
positions for the proposed strategy with a floating blending factor
for the parallel and serial strategies, we can see that the amount of
energy recovered was increased by more than 2% for the proposed
floating strategy.

3.2. Neural Network prediction optimization

The next step was to develop an advanced braking strategy. A
GRU architecture showed the smallest errors in predicting vehicle
velocity. Experiments were performed with different sizes of input
data windows: from 4 seconds to 20 seconds with 2-second
increments and different numbers of neurons.

The results presented in Fig. 4 show that the lowest prediction
error was achieved with a 12-second window and a total of 45
neurons. The network was trained for a specific driving style of
each driver, since it was decided to test the prediction accuracy
with different drivers. All three drivers had different driving styles
and were described using real tests with different vehicle dynamics.
The predicted and actual speeds were estimated, and a mean
absolute error (MAE), root mean square error (RMSE), and a
scatter index (SI) were calculated. The driving cycle included both
highway and city driving. The total distance traveled by the drivers

was approximately 150 km. The results are shown in Table 2.
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Fig. 4 Mean absolute error as a function of window size for
different neural network architectures. The window size refers to

the number of samples recorded at one second intervals.
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Table 2 Error outcomes predicting vehicle behavior for a local
cycle for three different drivers

Driver
) MAE RMSE |
profile
1 1,128 1,062 5,76
2 0,149 0,387 2,68
3 0,513 0,717 4,26

As it can be seen from the results, the maximum error is not
more than 6% and the minimum error for driver 2 is 2.68%. These
errors are acceptable, especially since the predicted velocity is
only an indication of the algorithm to be used in the future.

3.3. Experimental validation and results

To test the proposed controller, it was decided to use three
standardized driving cycles: the Worldwide Harmonized Light
Vehicles Test Procedure (WLTP), the Highway Fuel Economy
Test (HWFET) and the EPA Federal Test Procedure (FTP-75,
defined by the US Environmental Protection Agency (EPA).
These cycles were chosen as common driving standards on
different continents, so that the WLTP simulates driving on
European urban roads, while the HWFET reflects U.S. highway
speeds. The FTP-75 is a mixed city/highway cycle.

To evaluate the proposed algorithms, four experiments were
conducted for each cycle:

1. Without regeneration;

2. With regeneration. A serial blending strategy was used;

3. Efficiency map. In this test, the strategy based on the
algorithm described in Section 2.2 was used.

4. Advance braking. In this test, the regeneration strategy
of the efficiency map was used in conjunction with the algorithm
defined in Section 2.3, which is based on the Artificial Neural
Network.

Table 3 shows the simulation results for the experiments
performed.

Table 3 Experimental total energy consumption results,

[KW/100km]
WLTP HWFET FTP-75
Without
. 20.449 13.3527 19.0094
Regeneration
With
. 14.9744 11.46660 | 12.57320
Regeneration
Efficiency map 14.8764 11.46210 | 12.31490
Advance braking 14.2129 10.87450 11.78810

The result of the comparison of the proposed algorithms can be
seen in the pie chart (Fig. 4). This diagram shows how much
braking energy is recovered into electrical energy with the

different strategies.
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Fig. 5 Percentage of brake energy dissipation for different

cycles, where 100% is the whole kinetic braking energy.

For the WLTP cycle, 69% of the kinetic energy is recovered
with the series strategy. If the strategy based on the engine
efficiency map is used, the recovered energy can be increased by
1%. On the other hand, the predictive braking strategy, i.e., using
information about the predicted speed, increases the recovered
energy by another 8%. The remaining 22% is lost due to heat from
the brake discs and pads.

For the HWFET cycle, the series strategy recovers 73% of the
kinetic energy. With the strategy based on the engine efficiency
map, the recovered energy can be increased by less than 1%. In
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addition, early braking, i.e., using predicted speed information,
increases the recovered energy by another 23%. The remaining 4%
is lost due to heat from the brake disks and pads.

For the FTP-75 cycle, only 65% of the kinetic energy is
recovered with the standard strategy. With the strategy based on
the engine efficiency map, the recovered energy can be increased
by 3%. When using advance braking, i.e., using information about
the predicted speed, the recovered energy increases by another 5%.
The remaining 27% is lost due to heat from the brake disks and
pads.

In summary, the use of the Efficiency Map and Advance
Braking strategy has a positive effect in all three driving cycles.
The effect was most pronounced in the HWFET cycle, where a
total of 24% more energy was recovered, while only 4% was lost
due to heat generated. The smallest effect, 8% more energy
recovered, was in the FTP-75 cycle. However, the standard system
was also able to store the least amount of energy. This is due to the
higher number of full stops compared to the HWFET and WLTP
cycles and the type of recovery in the motors used.

4. CONCLUSION

This study has shown that the proposed regenerative braking
strategy can be improved based on the optimization of the motor
efficiency map and advanced braking with vehicle behavior
prediction. For this controller, experimental validation with
different cycles was conducted, which confirmed its efficiency.

With the efficiency map and advanced braking strategies
proposed in this article, up to 24% more braking kinetic energy

can be recovered depending on the driving cycle.
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