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ABSTRACT: Accurate “Situational Awareness” is a key component for reliable decision-making in autonomous driving. Relying on

only onboard sensor suites of individual AVs is not sufficient for this purpose, due to its inherent restrictions, like limited detection range

and non-line-of-sight limitations. Therefore, to have a safe AV design having a framework that facilitates the collaboration among multiple

connected AVs (CAVs) and jointly build up their scene understanding seems to be essential. In this work, we propose a novel framework

by utilizing the capabilities of advanced 5G communication and edge-computing technologies. Additionally, our framework is capable of

risk assessment and quantification that enables a clear characterization of the collaboration among CAVs and its impact on collision risk

reduction and uncertainty. We further investigate the effectiveness of the proposed approach by utilizing real world data and

postprocessing analysis.
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1. INTRODUCTION

Higher levels of autonomy in the context of ground vehicles are
expected to gradually enhance the safety and comfort of drivers
and passengers. It is well understood from various studies in the
human factor domain that lowering the amount of human
intervention and managing task sharing between humans and the
automated systems result in a reduction of imposed cognitive
workload on humans hence improved safety. To realize this, an
automated agent first needs to have a reliable and accurate
understanding of its surroundings and be able to precisely predict
the scene evolution, due to the future actions of the effective actors,
and then utilize this situational awareness to design its automated
actions. Historically, the dominant approach in the leading
automated vehicle (AV) research and industrial communities to
build up and continuously update this situational awareness, which
is essential for automated decision-making, has been based on
designing sophisticated sensor suites to be installed on each
autonomous vehicle. Although fused sensory information coming
from cameras, lidars, and radars can cover the requirements to a
good extent, this approach has some intrinsic limitations which
decreases the accuracy of prediction and decision-making modules.
These limitations are mostly due to the limited sensing range of
onboard sensors, sensor blindness, and their non-line-of-sight
restrictions. Therefore, only relying on sensory information of
individual AVs cannot cover all critical situations and therefore,
this information needs to be augmented with other additional

information streams especially in urban areas in which obstructed

views are likely to happen frequently. To address these challenges,
the concept of collaborative scene understanding has been
proposed and investigated as a promising alternative framework.
In this framework the intelligent vehicles, which are referred to as
CAVs (Connected and Autonomous Vehicles), can communicate
their information, coordinate their maneuvers with each other, and
fuse their on-board sensory data with the information they receive
from the other CAVs’ through communication media. This will
eventually result in a more comprehensive and accurate scene
understanding. Any stream of information that comes from other
CAVs can reveal some parts of the scene that might be hidden
from the recipient if it only utilizes its onboard sensors.

However, the collaborative scene understanding has its own
challenges that need to be addressed. This paper is devoted to two
major challenging aspects of this solution. First, we need to have
a consistent framework to be able to measure the benefits of
collaboration in terms of risk and uncertainty reduction. The
second point is related to the communication aspect of the problem
and tries to answer the question that how the information exchange
procedure among a group of CAVs could be facilitated by utilizing
a meaningful combination of communication and edge-
computation technologies. Due to potential high information
demands of collaborative scene understanding methods, this is an
extremely important and challenging point that needs to be
investigated.

In this paper, we briefly explain our solutions for each of these

two aspects of the problem and try to clarify our system-level
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perspective for a realizable collaborative scene understanding
framework. Some parts of the proposed framework have been
individually investigated in the past by our team at Honda
Research Institute, US, and here we leverage those findings and
lessons we have learned to propose a cohesive solution. Fig. /
illustrates a high-level schematic overview of collaborative
sensing and risk mapping based on the 5G network. As it is shown
in this figure, each CAV shares its sensory information through a
5G network. Smart infrastructure could also share its sensory

information in addition to its signal phase and timing.
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Fig. 1 System Architecture Schematic.

2. COLLABORATIVE SENSING AND RISK
ESTIMATION

AVs are expected to have a precise understanding of their
surroundings and be able to accurately estimate the risk of
collision and continuously update these estimates, especially in
challenging dynamic driving environments, to be able to surpass
human drivers’ capabilities and provide higher levels of safety and
comfort. The notion of information exchange among CAVs,
which is also referred to as Collaborative Sensing, could be a
promising approach to reduce both collision risk and also risk

uncertainty. This section provides a mathematical framework to

assess and quantify these aspects of collaborative sensing schemes.

Two main dominant risk assessment methods in the literature
are based on either the worst-case assumption of full occupancy
on the hidden zones [1], or the idealistic assumption of exact
identification and tracking of all other actors in the scene [2, 3].
However, our method for risk assessment does not purely follow
any of these approaches. Instead, we aim to come up with a more
accurate risk estimation in the hidden zones, using a priori
probabilities coming from the sensing history of the CAV’s sensor
suite and what it is receiving from other CAVs. Our framework
also provides the probability distribution of the estimated risk,
which enables us to evaluate the risk uncertainty. This will further

formalize the quantitative evaluation of the collaborative sensing

impact on risk uncertainty reduction. To give the reader an idea
about our method, our risk representation could be formulated as

follows (Eq. 1):

Ry = Z pucc(c; k). Pego (c, ko). L(Xegul Xc) (1)

Here, we are dividing the environment into multiple cells and ¢
is the cell index, p,..(c, k) is the occupancy probability of cell
c at time step k, Pego (C, k) is the probability that ego car occupies
cell ¢ atepoch k, and L(X,4,, X,) is the loss function, while X4,
and X represent the ego vehicle and cell states, respectively (each
one is a four-dimensional random vector, modeling two-
dimensional position and two-dimensional speed distributions). In
this formulation, we assume different cells to be independent in
terms of their occupancy probabilities. It is also important to
emphasize that Eq. 1 is based on a commonly accepted definition
of risk which is equivalent to the expected loss. We are defining
our loss function based on kinetic energy. More specifically, the
loss we are considering for cell ¢ due to collision could be
formulated as:

L(XegorXe ) = Cillvego = Tel* + GE[we — 57

where v, and V. are the expected velocity of the ego vehicle
and the weighted mean of particle velocities in cell c, respectively.
Also, v, in the second term, is the random variable of velocity in
cell ¢, which is the state of this cell (X.) . The constants

C; and C, are design choices and in our case, they should be
formed based on kinetic energy. So:

C; = Megome/2(Mego +m.) and C, = m,/ 2

It is also noteworthy that the cell loss has to be normalized with
respect to the discretization time interval and also cell area to make
sure that the calculated risk isn’t sensitive to the discretization
parameters choice. Following explanations also help to better
clarify this formulation.

In our framework, we inherited an object-free approach
representation scheme. In this method, unlike the object-based
method that assumes a specific class and appropriate category of
motion model for each traffic actor, there is no need to determine
the motion-model class for each actor, but instead, we need to
estimate the cells occupancy in a grid map for short future time
horizons. In this framework, an acceptable (safe) navigation exists
only if we can find at least one trajectory passing through only
unoccupied cells [4]. It is noteworthy that although we utilized the
object-free scheme in our modeling, it is not a restrictive
assumption and our method could be further expanded to object-
based representations, too. The mathematical tool we employ to

model the occupancy of the environment is called the Probabilistic
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Occupancy Map (POM), which, as we mentioned before,
discretizes the map into a grid of cells and is capable of modeling
the fused data received from multiple information sources. Note
that in our framework this notion could be translated as if the
sensory information is coming from multiple collaborating CAVs.
For each cell in the grid, the occupancy is modeled via a binary
Bernoulli random variable. Therefore, each cell is assumed to
either be occupied with probability p or empty with probability
1-p).

environments. In this case, at each snapshot, they represent the

POMs in general could be applied to dynamic

instantaneous estimated occupancy status of each cell, conditioned
on the measurement history. Bayesian Occupancy Filter (BOF) is
then utilized to calculate the occupancy maps, which could be
simpler than other methods, such as multi-target tracking. BOFs
do not try to explicitly associate each sensor measurement to a
specific detected object, but instead, they use measurements for
updating the occupancy probabilities of cells. It should be noted
here that BOFs assume that the grid cells are statistically
independent and although this assumption might slightly reduce
the accuracy, but its advantages, such as allowing the analytical
representation and parallel updates of Bayesian update equations,
can justify this accuracy reduction. In order to update the
occupancy grid maps, a variety of particle filter tracking solutions
are utilized based on the method proposed by Nuss, et al in [4],
i.e., Probability Hypothesis Density/Multi-Instance Bernoulli
(PHD/MIB) filter, which connects the dynamic grid cells
occupancy state estimation problem to the well-established notion

of finite-set statistics.

Fig. 2 Equipped Honda Vehicles for Data Collection [5].

By explaining our techniques for collision risk evaluation and
risk uncertainty modeling, which are capable of incorporating
multiple data streams potentially coming from different
collaborative CAVs, it becomes clear that how collaborative
sensing reduces the risk uncertainty. For more details on our
mathematical framework one can refer to our previous works such
as [5]. We prototyped this claim by data collected using two

equipped vehicles (Fig. 2) in an example scenario (Fig. 3).

In this sample scenario the ego vehicle sensor suite is not able
to directly detect the pedestrian due to the occlusion caused by the
bus which is next to it. On the other hand, another vehicle (called
collaborator vehicle) which is traveling on the other direction has
much better view of the intersection area and is able to detect and
track the pedestrian most of the time. Fig. 3 shows a birds-eye
view snapshot from this scenario. Also, Fig. 4 shows two
snapshots taken at the same moment, from ego vehicle and
collaborator vehicle perspectives.

Now, we consider two cases to compare in order to show the
advantage of collaborative sensing concept. First, when ego
vehicle can only access its own sensor suite information, and
second when it can also benefit from the collaborator vehicle
sensor information. A snapshot of the dynamic occupancy maps
that could be built overtime using the sensor information of ego
and collaborator vehicles in our collaborative sensing structure is
shown in Fig. 5. Also, Fig. 6 depicts the actual and predicted
accumulated risks under two different cases, i.e., with and without
using the collaborative vehicle information. The risk and its

uncertainty are clearly less under collaborative sensing set up.

Fig. 3 Assessment of Collaborative Sensing in an Intersection
Scenario [5].

Fig. 4 Scenario from ego vehicle and Collaﬁorator vehicle points

of view
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Fig. 5 Snapshot of dynamic occupancy map built with sensor
information of both vehicles [5].
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Fig. 6 Accumulated risk (actual and predicted) with and without
information sharing between ego and collaborative vehicles

3. COLLABORATIVE SENSING AND 5G-MEC
ARCHITECTURE

As mentioned in the previous sections, in a collaborative
sensing setup the sensory information is shared among a group of
vehicles, either directly or via a smart middle layer infrastructure
which potentially could also have computing capabilities. This
shared multi-source information stream enables the vehicles and
infrastructure to build up a more accurate estimate of the scene,
especially, in dynamic scenes and for the zones that are in the blind
spots of the sensor suites of individual vehicles. This more
accurate scene understanding in turn facilitates the implementation
of more advanced adaptive and cooperative applications, such as
adaptive platooning [6], remote maneuvering, and cloud-based
fully automated driving. However, the challenge here is that
sharing the raw sensor information is a high-demand solution in
terms of both required communication resources (such as
bandwidth and latency) and, also computational power, especially

in dense multi-agent scenes.

There are several resource management strategies and solutions
introduced in the literature (e.g., [7], [8]). [7] proposes novel
solutions for communication resource demand reduction while [8]
focuses on efficient methods of computation resource allocation,
for instance by preprocessing the sensory data at the transmitter
and then sharing this processed information (e.g., the final output
of the perception stack). Also, as an alternative way to approach
the problem of collaborative scene understanding, infrastructure
technologies have been investigated. This concept relies on smart
infrastructures with sensing and communication capabilities,
instead of sharing only the vehicles’ onboard sensory data. [9]
introduces an early deployment solution to improve situational
awareness and information exchange among road users and
discusses the technical challenges associated with this concept and
provides solutions to tackle these challenges. The technological
solution introduced in this paper, however, is mainly based on
utilizing capable (high bandwidth and low latency)
communication technologies, such as 5G, along with integrating
the edge computing solutions in the framework, to be able to
address the requirements of these high demand use cases.

Currently, 5G is the most advanced deployed communication
technology which offers the potential to address the demanding
requirements of the emerging use cases for the collaborative scene
understanding framework [10]. During the last twenty years, Wi-
Fi-based (IEEE 802.11p) and cellular-based (C-V2X) RATSs
(Radio Access Technologies) have been two main enablers of
V2X communications in the US, each with its advantages and
disadvantages. 5G NR-V2X, which has been proposed by 3GPP
as part of its Release 16 specifications, could be categorized as part
of the C-V2X framework and is the rational evolution of its
predecessors in the family of vehicular communications
technologies. However, it has some essential uniqueness
compared to previous C-V2X technologies such as a) enhanced
Mobile Broadband (eMBB),
Communications (mMTC), and c¢) Ultra-Reliable and Low-

b) massive Machine Type

Latency Communications (URLLC). The last item in this list is the
core enabler of the advanced high-demand V2X use cases, but
nevertheless, the other two factors are also very critical for this
technology. Previous variants of C-V2X have not been considered
seriously for automotive safety-critical use cases mostly due to the
high bandwidth, reliability, and latency requirements. However,
5G technology, especially in the C-Band, potentially can address
the bandwidth, and reliability demands, and also to some extent
provide reasonable latency, and therefore, we see it as a feasible

option to be included in our framework.
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In addition to 5G as our choice for the radio-level technique,
the framework could also be further improved by adding advanced
network-level technologies such as Edge-computing techniques.
Mobile Edge Computing (MEC), which is the evolutionary variant
of Mobile Cloud Computing (MCC) technology, offloads the
computational demands from the vehicles to the edge devices.
Therefore, it is a promising technology to enhance the overall
performance of the 5G-enabled application and also decrease the
in-vehicle resource requirements, which in turn would potentially
lead to a notable cost reduction in scale, an attractive element for
AV manufacturers and an important consideration for the AD
generalization roadmap.

In our framework, we have tried two different configurations in
terms of the data flow between the vehicles and the MEC. In the
first configuration, the computation burden is shared between the
vehicles and the MEC to further reduce the uplink communication
latency. More specifically, each CAYV tries to conduct some post-
processing to detect the non-CAV objects (including vehicles,
motorcycles, and pedestrians) that are being captured by its sensor
suite and then shares these detected objects with the MEC. MEC
receives this information from different CAVs, runs its risk
estimation logics, and then shares the outputs, in the form of direct
warnings and/or more abstract pieces of information such as risk
estimations, with CAVs. This configuration reduces the uplink
latency but needs more computational power on the CAV side. In
the second configuration, CAVs directly share their raw sensory
information, e.g., lidar point clouds with the MEC, MEC then runs
the post-processing for object detection and afterward runs its risk
estimation logic, similar to the previous configuration. Obviously,
this option adds more latency to the uplink but reduces the required
computational capabilities for CAVs. Fig. 7 shows a schematic of
these two configurations, along with the latency results we
observed in our tests for these two configurations. Following
paragraphs provide more details on the hardware and software
parts of our experiments.

In terms of the hardware, we used a Jackal Autonomous Mobile
Robot (AMR) platform, developed by Clearpath Robotics in our
tests. This Jackal robot was representing the vehicle. It should be
mentioned here that since this Jackal platform had the identical on-
board sensor-suite as a normal test car, replacing the test car with
this robot did not affect the validity of our experiments. The sensor
suite installed on the Jackal included a 5G UW modem (Telit
FT980m) in addition to a top-mounted 360-degree 3D LiDAR
(Velodyne HDL-32e). In order to simulate the other vehicle, we
utilized a high performance gaming laptop, equipped with a 5G

UW modem (Inseego MiFi M2100), as a part of the collaborative
perception environment. This laptop was also used to visualize the
incoming streams from the AMR and MEC.

The software set up to facilitate the stream of sensor
information between the AMR, MEC and visualization PC was
based on the Robot Operating System (ROS). In addition, a
modified OEM built Velodyne’s LiDAR processing packages
utilized in our tests. The modifications were mostly applied in
order to reduce the required bandwidth over a ROS topic, and also
to leverage MEC’s compute resources more efficiently. Also, it is
noteworthy that I order to reduce the LIDAR bandwidth
requirements, only the raw, unconstructed data was uploaded and
instead of sending the data-rich PointCloud2 ROS messages. In
this way we were able to reduce the LiDAR bandwidth
requirements by a factor of 10. Another important point is that
since initiating connections over multiple ports on the client by
MEC is disabled on Verizon’s public network by default to prevent
spam callers and unwanted data usage, and having these
connections among MEC, Jackal, and visualization PC was a
requirement in our set up, we had to establish a VPN server hosted
on the MEC to enable individual clients to connect to the MEC
through secure tunnels. An algorithm based on center point
[11] with SECOND [12] was chosen in our framework for
LiDAR object detection. This choice was due to its faster
execution than the required 100ms time frame on the
MEC’s GPUs. We tuned this algorithm in our set up to be
able to recognize pedestrians and vehicles. It aslo should be
mentioned that we utilized Verizon’s public MEC for this

trial which is located in Wall, NJ.
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Fig. 7 Schematic Diagram for the Two CAV-MEC Connection
Configurations

In Fig. 8, one can see a more clear break down of tbe
delays in different stages of our set up, for the case that

LIDAR raw data was being sent to the cloud. This set up
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has higher uplink latency compared to our other
configuration where processsed LIDAR data was being sent
to the MEC. The main conclusion from this study is that the
proposed architecture in this work seems to be feasible to

be deployed using commercial SG/MEC infrastructures.

1
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Fig. 8 Latency break down for different stages in our proposed
architecture

4. CONCLUSION

In this paper, we propose a novel collaborative scene
understanding scheme which incorporates the 5G communications
and Mobile Edge Computing technologies as its two main pillars
to enhance situational awareness. In addition, a risk quantification
method has been integrated in this framework which works based
on Bayesian Occupancy Filters concept, augmented with a
collision loss function. Incorporating this risk estimation block in
our framework, allows us to study and quantify the effect of
collaborative sensing on both risk reduction and risk uncertainty
reduction. Real world data and risk analysis are used to support the

claims and quantify the value and feasibility of this solution.
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