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ABSTRACT: A key challenge of an all-solid-state lithium (Li)-ion battery (ASSLiB) development is to prevent crack formation in the 

electrodes during the charge and discharge. Such cracks block the smooth Li-ion transport between negative and positive electrodes and 

lower the output power. A possible measure is employing a new functional material, which shows higher durability against the crack 

formation but does not hinder the battery performance. A lot of simulation techniques have been proposed to assist experimental efforts 

for the new material search. Currently a simulation method consists of three parts has been widely used; candidate generation, 

synthesizability screening, and performance prediction. However, the ideal materials for ASSLiB have not been reported to the best of 

our knowledge due to the limitation that a rapid material screening can be done within the conventional material databases. It is known 

that exploration of unknown materials needs prohibitable computational costs. In this paper, we propose a practical method for unknown 

material exploration. We combine an unknown crystal structure generation technique using a genetic algorithm, which is known for heavy 

computational costs, and a machine learning potential to reduce the calculation costs. We demonstrate the performance of the scheme by 

raising some case studies of new material searches. 
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1. BACKGROUND AND OBJECTIVES 

 Electrified vehicles such as hybrid electric vehicles (HEV), 

plugin hybrid electric vehicles (PHEV), battery electric vehicles 

(BEV), and fuel cell electric vehicles (FCEV) have been seen as 

the key technologies that can realize a carbon neutral society. 

Batteries are one of the common and important unites among these. 

All-solid-state lithium (Li)-ion battery (ASSLiB) attracts 

significant attention for their enhanced chemical stability against 

high temperature operations and energy density compared with 

conventional batteries employing liquid electrolytes [1]. Higher 

chemical stability of the solid-state electrolytes can realize 

enhanced energy density since it can simplify and downsize 

cooling unites. A key challenge in ASSLiB developments is the 

battery performance degradation caused by the crack formation in 

the electrodes during charge and discharge. The volume of the 

active material powders changes as the (de)-lithiation, resulting in 

the peelings on the powder interfaces and crack formation in the 

electrodes (Figure 1) [2]. These structural changes in the 

electrodes can hinder the Li-ion conduction between positive and 

negative electrodes and lower the output power.  

Electrode design optimization to minimize the impact of the 

crack formation is the essential task in the ASSLiB developments. 

Several approaches are possible in the design optimization (Figure 

2). In the micrometer to millimeter scale, design parameters such 

as thickness of electrode layers, mixing ratios of powders, powder 

shape, size etc. can be optimized. To decrease the number of the 

trial production and experimental tests, we previously reported a 

Figure 1. Schematic images of ASSLiB and the volume 

change of an active material as lithium insertion and ejection. 

Volume change of active materials causes powder interface 

peelings and cracks during the charge/discharge processes. 

Figure 2. Multi-scale illustration of ASSLiB. 
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meso-scale simulation model based on a finite element method and 

demonstrated a successful case of design optimization [3]. In the 

scale of angstrom to nanometer designs, we select the functional 

materials that possess high durability against the crack formation 

as well as nice battery performance. Currently a simulation scheme 

consists of three parts is used in many cases to assist experimental 

works; candidate generation, synthesizability screening, and 

performance prediction (Figure 3) [4]. Firstly, a list of candidate 

materials is generated, and the candidates are screened by the 

synthesizability that is evaluated by decomposition energy. The 

candidates are further screened by the properties required to the 

batteries. Although there have been many simulation efforts for 

the material search, the ideal materials for ASSLiB have not been 

reported to the best of our knowledge. This is partly due to the 

limitation that a quick material screening can be done within the 

known materials that are listed in the conventional material 

databases. We believe exploration of unknown materials largely 

progresses the ASSLiB developments. 

In this paper, we propose a practical method for the unknown 

material exploration. We combine an unknown crystal structure 

generation technique using a genetic algorithm, which is known 

for heavy computational costs, and a machine learning potential as 

a measure to the large calculation costs. We demonstrate the 

performance of the method by raising several case studies of new 

material searches. 

 

2. METHODOLOGY 

2.1. Listing theoretical material models 

We generate a list of theoretical material models as the first step. 

We have developed two programs for the model generation. The 

first method fixes the crystal structure and substitutes the element 

of each atomic position in the target models. The second approach 

fixes chemical compositions but explores crystal structures. Both 

programs utilize a genetic algorithm implemented in the Atomic 

Simulations Environment (ASE) software package to produce new 

material models [5]. We choose the programs according to the 

needs and the situations of our developments. The flow of the 

structure exploration is described in the figure 4. The program 

creates theoretical models with random atomic positions from 

input chemical composition, and it relaxes the structures along the 

potential surfaces. Then, the optimized structures are converted to 

new structures by a mutation scheme where children structures 

keep some features of their parent structures. Then, the children 

are relaxed again. After we repeat the cycle many times, the 

algorithm proposes new crystal structures. 

 

2.2. Screen candidates by synthesizability 

The second step is to check the synthesizability of the generated 

material models by an indicator of decomposition energy. The 

decomposition energy is evaluated by an “energy above hull” 

scheme referring to a large energy data set of known compounds 

(Figure 5). Smaller decomposition energy indicates a less 

tendency to decompose into the most stable phases and easier 

synthesis. We have applied our original material energy database 

containing more than 300,000 compounds whose data has been 

derived from a unified calculation condition. We are still 

expanding the database by adding material data from our 

developments of not only batteries but also catalysts, semi-

Figure 3. Flow of material exploration. 
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Figure 5. Synthesizability evaluation. 

Figure 4. Structure generation by a genetic algorithm. 
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conductors, magnets, and so on related with automobile 

developments.  

  

2.3. Screen candidates by properties 

The third step is to evaluate material properties required to 

ASSLiB components. In the case of an electrolyte search, for 

example, we evaluate Li-ion conductivity and elastic constants. Li-

ion conductivity can be predicted by a molecular dynamics (MD) 

simulation. Elastic constants can be theoretically determined by 

analyzing the energy variation dependent on the lattice constants 

of the crystal models. MD is a method that predicts dynamical 

behaviors of ions by continuously calculating the forces on each 

atom at each snapshot and moves the ions along the forces (Figure 

6). The diffusion coefficient (D) of Li-ion can be calculated from 

the obtained mean-square displacements (MSD) of Li-ions:  

MSD(𝑡) =
1

𝑁
∑[𝑟𝑖(0) − 𝑟𝑖(𝑡)]2

𝑁

𝑖

                                                   (1) 

𝐷 =
1

6
lim
𝑡→∞

𝑑〈MSD〉

𝑑𝑡
                                                                           (2) 

where N is the total number of diffusing Li-ions, r(t) is the position 

of the ith Li-ion. 

 

2.4. Simulation method 

Above unknown material search flow is very slow due to the 

heavy computational costs of the atomic simulations. The biggest 

bottleneck is the material model generation by the genetic 

algorithm. Second bottleneck is the MD simulations for Li-ion 

conductivity evaluation. Both processes need DFT calculations 

repeated many times. To accelerate the calculation, we adopted an 

atomic simulator using machine learning potentials (MLPs). MLP 

is a machine learning model that predict energy and forces from 

the atomic configurations of target material models. Large DFT 

calculation databases are used to train the MLPs. MLPs can 

achieve faster calculation than DFT as well as keeping comparable 

calculation accuracy. We have selected Preferred Potential (PFP) 

as a MLP which is provided in a calculation environment of 

Matlantis because the model is trained by a variety of atomic 

configurations and chemical compositions, and active 

improvements are in progress as a universal force field [6, 7].  

We can achieve both high speed and accuracy by applying 

accurate DFT simulations after a quick screening by the MLP 

simulations. In DFT simulations, the Vienna Ab initio simulation 

package (VASP) was selected as a solver [8-10]. Inner core 

electrons were represented by the projector-augmented wave 

(PAW) potentials. Electron exchange-correlation energy 

functionals were represented with the generalized gradient 

approximation (GGA), and the model of Perdew, Burke, and 

Ernzerhof (PBE) was used for the semi-local corrections. 

 

3. RESULTS AND DISCUSSION 

3.1. Material generation by element substitution 

The first trial is to generate new Li-ion conducting materials. 

We explored Li2MCl4 with a spinel structure where M is a 

transition metal [11]. We built a supercell and substituted the 

transition metal sites by various elements with various ratios 

(Figure 7). About 100 models were generated to each elemental 

compositions to investigate various substituted-site distribution. 

Around 50000 substituted models were generated in total. All 

structures were relaxed, and the formation energy were evaluated 

by a PFP force field (figure 7). Calculation time was much shorter 

than the same algorithm using DFT calculation by around 70 times 

in our computational environments. We extracted stable 

compositions (+ 0.1 eV/atom than local minimum) from the 

calculation results as candidate materials for future experimental 

tests. These results indicate that the method can help us to explore 

new materials in a practical time. 

 

3.2. Materials generation with new crystal structures 

Next, we performed a material model generation without 

crystal structure templates. We searched stable crystal structures 

by inputting LiCoO2 which is the chemical formula of a well-

Figure 6. Schematic image of a molecular dynamics. 

Figure 7. 2x2x4 supercell of Li2MnCl4 visualized by VESTA 

[12] (left), and formation energy of each composition (right). 
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known battery cathode active material. Figure 8 shows the energy 

variation during the new crystal structure search process. At the 

end of the calculation, the algorithm successfully discovered the 

 ry  al   ru  ure of “R-  ” a   he  o     able,  h  h     he  a e 

with the existing cathode. The result implies that this scheme is 

applicable in exploring new crystal structures. 

 

3.3. Material property evaluation 

Promising materials can be extracted from the generated 

candidates above by evaluating material properties. In the 

exploration of oxygen (O)-ion conducting materials, we evaluated 

O-ion diffusion constants by MD simulations. Figure 9 shows 

MSDs and the Arrhenius plot of CeO2 evaluated by a PFP force 

field. Because O-ion hopping from one site to the neighboring site 

is known to be a rare event, we accelerated the phenomenon by 

raising simulation temperature and by creating O-vacancies in the 

supercells. In our trial, the MSDs and Arrhenius plot can be 

produced within a day, which is much faster than the conventional 

DFT calculation. This indicate that we can accelerate the 

expansion of material property database with MPLs.  

 

4. CONCLUSION 

We have developed a practical scheme to discover unknown 

materials for ASSLiB. The method consists of three parts; 

candidate generation, synthesizability screening, and performance 

prediction. We have overcome the large calculation costs of 

unknown model generation and the property evaluation by MLP 

technology. We believe that the accelerated material data 

expansion can help machine learning research, and it can further 

accelerate material research of ASSLiB materials. 
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Figure 8. Progress of stable crystal structure search of LiCoO2. 

Figure 9. O-ion diffusion in CeO2. 




