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ABSTRACT: The braking function of an electric vehicle can be implemented with both friction brakes and electric motors, 

which require a suitable control strategy for their coordinated operation. Many previous studies on this topic have focused on 

conventional serial or parallel brake control strategies. In this paper, we present a different approach to brake torque blending 

control based on a motor efficiency map and an improved single pedal control strategy based on vehicle behavior prediction. 

In this strategy, the regenerative braking is prepared for activation when the controller predicts a deceleration mode. The motor 

efficiency map of the test model was analyzed and optimized in this way. An artificial neural network was selected to 

implement an advanced braking strategy. Standardized driving cycles with three different driver profiles were used to train 

and evaluate the neural network. The results show that this approach significantly improves the vehicle’s efficiency. For the 

WLTP cycle, the proposed strategy can reduce the average energy consumption by 4%, at which the energy recovered has 

been increased by 9%. For the HWFET cycle, the recovered energy could be increased up to 24%. 
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1. INTRODUCTION 

Although electric motors are capable of regenerating energy 

during braking, conventional friction brakes are still installed in 

electric vehicles to ensure braking performance and fault-tolerant 

operation. (1,2) This requires appropriate control strategies for 

coordinated operation of both braking systems. 

Currently, serial and parallel architectures exist for most 

regenerative braking control strategies. (3) The main difference 

between parallel and serial approaches is that in the parallel 

architecture a specific braking torque ratio between the friction 

braking system and the electric motor is specified. In the serial 

strategy, the maximum possible braking torque of the electric 

motor is used as a constant, and the friction braking system is 

activated only when needed. (4) 

Some previous studies have shown that both strategies work 

differently depending on the maneuvering conditions. For 

example, the article (5) shows 6-12% better results for the serial 

control. However, in the article (6) the parallel strategy shows better 

performance under certain maneuvers and operating conditions. 

This can be explained by the fact that the efficiency of the electric 

motor is not constant under different load conditions. (7) 

In this paper, a different strategy is proposed based on floating 

mixing ratio control, which realizes separate management of the 

two braking systems depending on the motor efficiency map. This 

strategy will later be referred to as "floating". 

It should also be mentioned that some strategies aim to improve 

the braking efficiency not only by regeneration, but also by 

reconfiguring the propulsion system or adjusting its parameters to 

the maneuvering conditions (8), which can lead to a reduction in 

the total power consumption of the electric vehicle. For example, 

in work (9), the powertrain configuration is adapted to the driving 

conditions based on the prediction of the vehicle behavior using 

Markov chains. Another example is the work (10), which deals with 

the prediction of the speed profile using neural networks. 

In this work, advanced regenerative braking control based on 

vehicle behavior prediction is also proposed. 

 

2. Controller Design 

2.1. Target vehicle 

The experimentally verified vehicle model used in this study is 

based on an all-wheel drive sport utility vehicle (SUV) with a total 

mass of 2857 kg. The powertrain is implemented with in-wheel 

motors (IWM). The IWM parameters are given in Table 1. The 

vehicle systems were first tested on the appropriate dynamometric 

and component test rigs to produce highly realistic models, 

including the electrohydraulic decoupled braking system model, 

vehicle body inertia model, suspension kinematics model, vehicle 
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aerodynamic model, IWM and electric powertrain models, and tire 

dynamics model. The models were then implemented in a co-

simulation environment consisting of the Simcenter Amesim and 

MATLAB/Simulink software. The regenerative controller was 

designed in MATLAB/Simulink.  

 

Table 1  Motor Specifications 

Nominal supply voltage 370 V DC 

Max. Torque (velocity, current) 
1200 Nm  

(300 rpm, 390 A) 

Max. Power (torque, velocity) 
110 kW  

(1500 Nm, 700 rpm) 

Max. speed (no-load) 425 V DC 1516 rpm 

Max. electric motor efficiency 94% 

 

2.2. Proposed controller architecture 

 

Fig.  1 Controller flowchart. 

 

The control unit is constructed according to Fig. 1 with the 

following parameters: Pb - brake pedal position, Pa - accelerator 

pedal position, Tm - motor torque, v(t) - current velocity of the 

model, v(t+1) - predicted velocity of the model in 1 second, 

v(t1...t10) - an array of data on the previous behavior of the vehicle, 

Td - required torque, To - optimal regenerative torque, Tm - torque 

exerted by motor, Tf - torque generated by the friction brake 

system, vw - wheel velocity. The amount of energy recovered 

depends mainly on two parameters: the torque on the wheel and 

the speed of the IWM rotor. However, this parameter is also 

affected by the efficiency of the motor, which is different for 

negative torque (i.e. braking torque). Therefore, it is necessary to 

use the efficiency map of the motor as a function of the motor 

efficiency at certain rotor velocities and torques, Fig. 2. 

It is also necessary to find a condition for using the maximum 

motor efficiency. For the proposed strategy, the efficiency map 

was optimized using the Gradient descent method.  

 

 

Fig.  2 Motor efficiency when braking a vehicle model. 

 

Thus the optimization task is defined as follows. 

𝑀𝐴𝑋𝑑𝑒𝑚𝑎𝑛𝑑,𝑣𝑥
 (𝐸𝑛𝑒𝑟𝑔𝑦[𝑇𝑜𝑟𝑞𝑢𝑒, 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦]) 

For the driver's current deceleration demand, the optimization 

looks for the maximum energy recovered as a function of three 

variables: torque, wheel speed, and electric motor efficiency under 

current conditions. 

 

2.3. Formulation of the braking control 

According to the proposed strategy, regenerative braking is 

applied only when the vehicle would continue to decelerate. When 

the driver is about to release the pedal and maintain the previous 

velocity, the regenerative brake should not be activated. To 

implement this method, it was decided to predict the speed of the 

vehicle. In this study, it is proposed to predict the velocity using 

an artificial neural network based on the previous velocity profile 

of the vehicle. 

The forward prediction time should be several times faster than 

the response time of the braking system, in which it is possible to 

request the required braking torque. An average value of 1 second 

was chosen to predict the behavior of the vehicle. 

The data available to create the neural network prediction may 

also be limited. For this reason, it was decided to set the length of 

the maneuver between 4 and 20 seconds. This means that the data 

set consists of samples recorded at a rate of 1 per second, and each 

sample contains between 4 and 20 values, depending on the case. 

Since the number of available artificial neural network 

architectures is very large, different types have been studied and 

tested. Recurrent neural networks (RNNs) are designed to process 

sequential data and are used for time series prediction. They use 

information from the sequence and are therefore better able to 

work with patterns. The task described does not require the 

analysis of very long sequences, so it is possible to use a simpler 

cell type. However, a simple RNN is more sensitive to the 

vanishing gradient problem, which negatively affects what is 

known as short-term memory. The advantage of Gated Recurrent 
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Units (GRUs) and Long Short-Term Memory (LSTM) cells over 

a simple RNN architecture is that they reduce the probability of 

the vanishing gradient problem. When choosing between GRU 

and LSTM, it should be noted that due to the structural 

characteristics of GRU, it is possible to achieve faster prediction 

compared to LSTM by reducing the number of computations, 

which is crucial when using the predicted information in a 

complex system such as an ECU in a vehicle. Considering this, the 

GRU architecture has been shown to be the most suitable for 

vehicle behavior prediction. (10) 

In this study, an artificial neural network is used to implement 

vehicle braking before the driver presses the brake pedal. 

Embedded Keras libraries with a number of 2 to 28 neurons on 

two layers and three different architectures were used to 

implement the neural network. Training was performed by 

backpropagation, specifically Levenberg-Marquardt training. 

Performance measures were compared over 163 training trials 

with different numbers of neurons. 

 

3. Experimental results 

3.1. Motor efficiency optimization  

The torque optimization experiments were performed using the 

real-time cosimulation with the high-fidelity models created as a 

result of testing the relevant hardware components. The controller 

was implemented on the real-time vehicle model according to the 

algorithm (Figure 1). Three types of braking tests were performed: 

parallel regeneration mode, serial regeneration mode, and braking 

with a variable blending factor (based on the efficiency map). In 

this test, the vehicle accelerates to a velocity of 50 km/h, maintains 

this velocity for 10 seconds, and then brakes at a specific brake 

pedal position. In the study, the brake tests were conducted at four 

pedal positions: 20%, 40%, 50%, and 70% of full pedal travel. The 

results of the tests are shown in Figure 3. 

 

Fig. 3  Comparison of regenerated energy with three different 

strategies at different brake pedal positions. 

Comparing the experimental results at different brake pedal 

positions for the proposed strategy with a floating blending factor 

for the parallel and serial strategies, we can see that the amount of 

energy recovered was increased by more than 2% for the proposed 

floating strategy. 

 

3.2. Neural Network prediction optimization 

The next step was to develop an advanced braking strategy. A 

GRU architecture showed the smallest errors in predicting vehicle 

velocity. Experiments were performed with different sizes of input 

data windows: from 4 seconds to 20 seconds with 2-second 

increments and different numbers of neurons. 

The results presented in Fig. 4 show that the lowest prediction 

error was achieved with a 12-second window and a total of 45 

neurons. The network was trained for a specific driving style of 

each driver, since it was decided to test the prediction accuracy 

with different drivers. All three drivers had different driving styles 

and were described using real tests with different vehicle dynamics. 

The predicted and actual speeds were estimated, and a mean 

absolute error (MAE), root mean square error (RMSE), and a 

scatter index (SI) were calculated. The driving cycle included both 

highway and city driving. The total distance traveled by the drivers 

was approximately 150 km. The results are shown in Table 2. 

 

Fig. 4  Mean absolute error as a function of window size for 

different neural network architectures. The window size refers to 

the number of samples recorded at one second intervals. 
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Table 2  Error outcomes predicting vehicle behavior for a local 

cycle for three different drivers 

Driver 

profile 
MAE RMSE SI 

1 1,128 1,062 5,76 

2 0,149 0,387 2,68 

3 0,513 0,717 4,26 

 

As it can be seen from the results, the maximum error is not 

more than 6% and the minimum error for driver 2 is 2.68%. These 

errors are acceptable, especially since the predicted velocity is 

only an indication of the algorithm to be used in the future. 

 

3.3. Experimental validation and results 

To test the proposed controller, it was decided to use three 

standardized driving cycles: the Worldwide Harmonized Light 

Vehicles Test Procedure (WLTP), the Highway Fuel Economy 

Test (HWFET) and the EPA Federal Test Procedure (FTP-75, 

defined by the US Environmental Protection Agency (EPA). 

These cycles were chosen as common driving standards on 

different continents, so that the WLTP simulates driving on 

European urban roads, while the HWFET reflects U.S. highway 

speeds. The FTP-75 is a mixed city/highway cycle. 

To evaluate the proposed algorithms, four experiments were 

conducted for each cycle: 

1. Without regeneration; 

2. With regeneration. A serial blending strategy was used; 

3. Efficiency map. In this test, the strategy based on the 

algorithm described in Section 2.2 was used. 

4. Advance braking. In this test, the regeneration strategy 

of the efficiency map was used in conjunction with the algorithm 

defined in Section 2.3, which is based on the Artificial Neural 

Network. 

Table 3 shows the simulation results for the experiments 

performed. 

Table 3  Experimental total energy consumption results, 

[kW/100km] 

 WLTP HWFET FTP-75 

Without 

Regeneration 
20.449 13.3527 19.0094 

With 

Regeneration 
14.9744 11.46660 12.57320 

Efficiency map 14.8764 11.46210 12.31490 

Advance braking 14.2129 10.87450 11.78810 

The result of the comparison of the proposed algorithms can be 

seen in the pie chart (Fig. 4). This diagram shows how much 

braking energy is recovered into electrical energy with the 

different strategies.  

 

Fig. 5  Percentage of brake energy dissipation for different 

cycles, where 100% is the whole kinetic braking energy. 

 

For the WLTP cycle, 69% of the kinetic energy is recovered 

with the series strategy. If the strategy based on the engine 

efficiency map is used, the recovered energy can be increased by 

1%. On the other hand, the predictive braking strategy, i.e., using 

information about the predicted speed, increases the recovered 

energy by another 8%. The remaining 22% is lost due to heat from 

the brake discs and pads. 

For the HWFET cycle, the series strategy recovers 73% of the 

kinetic energy. With the strategy based on the engine efficiency 

map, the recovered energy can be increased by less than 1%. In 
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addition, early braking, i.e., using predicted speed information, 

increases the recovered energy by another 23%. The remaining 4% 

is lost due to heat from the brake disks and pads. 

For the FTP-75 cycle, only 65% of the kinetic energy is 

recovered with the standard strategy. With the strategy based on 

the engine efficiency map, the recovered energy can be increased 

by 3%. When using advance braking, i.e., using information about 

the predicted speed, the recovered energy increases by another 5%. 

The remaining 27% is lost due to heat from the brake disks and 

pads. 

In summary, the use of the Efficiency Map and Advance 

Braking strategy has a positive effect in all three driving cycles. 

The effect was most pronounced in the HWFET cycle, where a 

total of 24% more energy was recovered, while only 4% was lost 

due to heat generated. The smallest effect, 8% more energy 

recovered, was in the FTP-75 cycle. However, the standard system 

was also able to store the least amount of energy. This is due to the 

higher number of full stops compared to the HWFET and WLTP 

cycles and the type of recovery in the motors used. 

 

4. CONCLUSION 

This study has shown that the proposed regenerative braking 

strategy can be improved based on the optimization of the motor 

efficiency map and advanced braking with vehicle behavior 

prediction. For this controller, experimental validation with 

different cycles was conducted, which confirmed its efficiency. 

With the efficiency map and advanced braking strategies 

proposed in this article, up to 24% more braking kinetic energy 

can be recovered depending on the driving cycle. 
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