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ABSTRACT: A key challenge of an all-solid-state lithium (Li)-ion battery (ASSLiB) development is to prevent crack formation in the
electrodes during the charge and discharge. Such cracks block the smooth Li-ion transport between negative and positive electrodes and
lower the output power. A possible measure is employing a new functional material, which shows higher durability against the crack
formation but does not hinder the battery performance. A lot of simulation techniques have been proposed to assist experimental efforts
for the new material search. Currently a simulation method consists of three parts has been widely used; candidate generation,
synthesizability screening, and performance prediction. However, the ideal materials for ASSLiB have not been reported to the best of
our knowledge due to the limitation that a rapid material screening can be done within the conventional material databases. It is known
that exploration of unknown materials needs prohibitable computational costs. In this paper, we propose a practical method for unknown
material exploration. We combine an unknown crystal structure generation technique using a genetic algorithm, which is known for heavy
computational costs, and a machine learning potential to reduce the calculation costs. We demonstrate the performance of the scheme by

raising some case studies of new material searches.
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1. BACKGROUND AND OBJECTIVES
Electrified vehicles such as hybrid electric vehicles (HEV),
plugin hybrid electric vehicles (PHEV), battery electric vehicles
(BEV), and fuel cell electric vehicles (FCEV) have been seen as

the key technologies that can realize a carbon neutral society.

Batteries are one of the common and important unites among these.

All-solid-state lithium (Li)-ion battery (ASSLiB) attracts
significant attention for their enhanced chemical stability against
high temperature operations and energy density compared with
conventional batteries employing liquid electrolytes [1]. Higher
chemical stability of the solid-state electrolytes can realize
enhanced energy density since it can simplify and downsize
cooling unites. A key challenge in ASSLiB developments is the
battery performance degradation caused by the crack formation in
the electrodes during charge and discharge. The volume of the
active material powders changes as the (de)-lithiation, resulting in
the peelings on the powder interfaces and crack formation in the
electrodes (Figure 1) [2]. These structural changes in the
electrodes can hinder the Li-ion conduction between positive and
negative electrodes and lower the output power.

Electrode design optimization to minimize the impact of the
crack formation is the essential task in the ASSLiB developments.

Several approaches are possible in the design optimization (Figure

2). In the micrometer to millimeter scale, design parameters such
as thickness of electrode layers, mixing ratios of powders, powder
shape, size etc. can be optimized. To decrease the number of the

trial production and experimental tests, we previously reported a
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Figure 1. Schematic images of ASSLiB and the volume
change of an active material as lithium insertion and ejection.
Volume change of active materials causes powder interface

peelings and cracks during the charge/discharge processes.
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Figure 2. Multi-scale illustration of ASSLIB.
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meso-scale simulation model based on a finite element method and
demonstrated a successful case of design optimization [3]. In the
scale of angstrom to nanometer designs, we select the functional
materials that possess high durability against the crack formation
as well as nice battery performance. Currently a simulation scheme
consists of three parts is used in many cases to assist experimental
works; candidate generation, synthesizability screening, and
performance prediction (Figure 3) [4]. Firstly, a list of candidate
materials is generated, and the candidates are screened by the
synthesizability that is evaluated by decomposition energy. The
candidates are further screened by the properties required to the
batteries. Although there have been many simulation efforts for
the material search, the ideal materials for ASSLiB have not been
reported to the best of our knowledge. This is partly due to the
limitation that a quick material screening can be done within the
known materials that are listed in the conventional material
databases. We believe exploration of unknown materials largely
progresses the ASSLiB developments.

In this paper, we propose a practical method for the unknown
material exploration. We combine an unknown crystal structure
generation technique using a genetic algorithm, which is known
for heavy computational costs, and a machine learning potential as
a measure to the large calculation costs. We demonstrate the
performance of the method by raising several case studies of new

material searches.

2. METHODOLOGY
2.1. Listing theoretical material models

We generate a list of theoretical material models as the first step.

We have developed two programs for the model generation. The
first method fixes the crystal structure and substitutes the element
of each atomic position in the target models. The second approach
fixes chemical compositions but explores crystal structures. Both
programs utilize a genetic algorithm implemented in the Atomic
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Figure 3. Flow of material exploration.

Simulations Environment (ASE) software package to produce new
material models [5]. We choose the programs according to the
needs and the situations of our developments. The flow of the
structure exploration is described in the figure 4. The program
creates theoretical models with random atomic positions from
input chemical composition, and it relaxes the structures along the
potential surfaces. Then, the optimized structures are converted to
new structures by a mutation scheme where children structures
keep some features of their parent structures. Then, the children
are relaxed again. After we repeat the cycle many times, the

algorithm proposes new crystal structures.
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Figure 4. Structure generation by a genetic algorithm.

2.2. Screen candidates by synthesizability

The second step is to check the synthesizability of the generated
material models by an indicator of decomposition energy. The
decomposition energy is evaluated by an “energy above hull”
scheme referring to a large energy data set of known compounds
(Figure 5). Smaller decomposition energy indicates a less
tendency to decompose into the most stable phases and easier
synthesis. We have applied our original material energy database
containing more than 300,000 compounds whose data has been
derived from a unified calculation condition. We are still
expanding the database by adding material data from our

developments of not only batteries but also catalysts, semi-
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Figure 5. Synthesizability evaluation.
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conductors, magnets, and so on related with automobile

developments.

2.3. Screen candidates by properties

The third step is to evaluate material properties required to
ASSLiB components. In the case of an electrolyte search, for
example, we evaluate Li-ion conductivity and elastic constants. Li-
ion conductivity can be predicted by a molecular dynamics (MD)
simulation. Elastic constants can be theoretically determined by
analyzing the energy variation dependent on the lattice constants
of the crystal models. MD is a method that predicts dynamical
behaviors of ions by continuously calculating the forces on each
atom at each snapshot and moves the ions along the forces (Figure
6). The diffusion coefficient (D) of Li-ion can be calculated from
the obtained mean-square displacements (MSD) of Li-ions:

N
1
MSD() = 57 ) [r(0) = n(OF &)
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_gtLTo dt @

where N is the total number of diffusing Li-ions, r(t) is the position
of the ith Li-ion.
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Figure 6. Schematic image of a molecular dynamics.

2.4. Simulation method

Above unknown material search flow is very slow due to the
heavy computational costs of the atomic simulations. The biggest
bottleneck is the material model generation by the genetic
algorithm. Second bottleneck is the MD simulations for Li-ion
conductivity evaluation. Both processes need DFT calculations
repeated many times. To accelerate the calculation, we adopted an
atomic simulator using machine learning potentials (MLPs). MLP
is @ machine learning model that predict energy and forces from
the atomic configurations of target material models. Large DFT
calculation databases are used to train the MLPs. MLPs can
achieve faster calculation than DFT as well as keeping comparable
calculation accuracy. We have selected Preferred Potential (PFP)
as a MLP which is provided in a calculation environment of

Matlantis because the model is trained by a variety of atomic

configurations and chemical compositions, and active
improvements are in progress as a universal force field [6, 7].

We can achieve both high speed and accuracy by applying
accurate DFT simulations after a quick screening by the MLP
simulations. In DFT simulations, the Vienna Ab initio simulation
package (VASP) was selected as a solver [8-10]. Inner core
electrons were represented by the projector-augmented wave
(PAW)

functionals were represented with the generalized gradient

potentials. Electron exchange-correlation —energy
approximation (GGA), and the model of Perdew, Burke, and

Ernzerhof (PBE) was used for the semi-local corrections.

3. RESULTS AND DISCUSSION

3.1. Material generation by element substitution
The first trial is to generate new Li-ion conducting materials.
We explored Li2MCls with a spinel structure where M is a
transition metal [11]. We built a supercell and substituted the
transition metal sites by various elements with various ratios
(Figure 7). About 100 models were generated to each elemental
compositions to investigate various substituted-site distribution.
Around 50000 substituted models were generated in total. All
structures were relaxed, and the formation energy were evaluated
by a PFP force field (figure 7). Calculation time was much shorter
than the same algorithm using DFT calculation by around 70 times
in our computational environments. We extracted stable
compositions (+ 0.1 eV/atom than local minimum) from the
calculation results as candidate materials for future experimental
tests. These results indicate that the method can help us to explore

new materials in a practical time.
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Figure 7. 2x2x4 supercell of Li2MnCls visualized by VESTA

[12] (left), and formation energy of each composition (right).

3.2. Materials generation with new crystal structures
Next, we performed a material model generation without
crystal structure templates. We searched stable crystal structures

by inputting LiCoO2 which is the chemical formula of a well-
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known battery cathode active material. Figure 8 shows the energy
variation during the new crystal structure search process. At the
end of the calculation, the algorithm successfully discovered the
crystal structure of “R-3m” as the most stable, which is the same
with the existing cathode. The result implies that this scheme is

applicable in exploring new crystal structures.
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Figure 8. Progress of stable crystal structure search of LiCoO..

3.3. Material property evaluation

Promising materials can be extracted from the generated
candidates above by evaluating material properties. In the
exploration of oxygen (O)-ion conducting materials, we evaluated
O-ion diffusion constants by MD simulations. Figure 9 shows
MSDs and the Arrhenius plot of CeO2 evaluated by a PFP force
field. Because O-ion hopping from one site to the neighboring site
is known to be a rare event, we accelerated the phenomenon by
raising simulation temperature and by creating O-vacancies in the
supercells. In our trial, the MSDs and Arrhenius plot can be
produced within a day, which is much faster than the conventional
DFT calculation. This indicate that we can accelerate the
expansion of material property database with MPLs.
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Figure 9. O-ion diffusion in CeOo.

4. CONCLUSION
We have developed a practical scheme to discover unknown
materials for ASSLiB. The method consists of three parts;
candidate generation, synthesizability screening, and performance
prediction. We have overcome the large calculation costs of
unknown model generation and the property evaluation by MLP

technology. We believe that the accelerated material data
expansion can help machine learning research, and it can further

accelerate material research of ASSLiB materials.
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