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ABSTRACT: The design or the optimization of transport systems is a difficult task. This is especially true in the case of the introduction
of new transport modes in an existing system. The main reason is, that even small additions and changes result in the emergence of new
travel patterns, likely resulting in an adaptation of the travel behavior of multiple other agents in the system. Here we consider the
optimization of future Urban Air Mobility services under consideration of effects induced by the new mode to an existing system. We
tackle this problem through a bi-level network design approach, in which the discrete decisions of the network design planner are optimized
based on the evaluated dynamic demand of the user's mode choices. We solve the activity-based network design problem (AB-NDP) using
a Genetic Algorithm on a multi-objective optimization problem while evaluating the dynamic demand with the large-scale Multi-Agent
Transport Simulation (MATSim) framework. The proposed bi-level approach is compared against the results of a coverage approach using
a static demand method. The bi-level study shows better results for expected UAM demand and total travel time savings across the
transportation system. Due to its generic character, the demonstrated utilization of a bi-level method is applicable to other mobility service

design questions and to other regions.
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1. INTRODUCTION

Network design problems (NDP) have been a research subject
foralong time (1, 2). They are relevant to many different domains,
including transportation, telecommunications, logistics, and
economics, to name a few. Especially with the changing mobility
landscape and the emergence of new multi-modal transport
systems, the network design question is still very relevant. One
complexity of network designs is that on first sight some effects
can seem counterintuitive. See Braess’ Paradox, which
demonstrates how the overall traffic flow can be slowed by adding
more roads to a transport network.

Network design investigations can be grouped according to their
degree of including transport dynamics, ranging from approaches
focusing on methodological aspects to holistic representation of
multi-stakeholder aspects. The first group of methods for solving
NDPs (3) can be described as single-level approaches that
investigate network designs, with only static or partial dynamic
information of the transport system, often used when examining
optimization algorithms (4,5). The second group utilizes bi-level
approaches that also incorporate the supply side of the transport
system in the design process through models or simulation
methods, including dynamics as congestion effects and sometimes

also an adaption of the agents' route choices during the design

process. A third group for solving NDPs are the bi-level
approaches that incorporate also dynamic demand information of
the transport system in addition to including the dynamic supply
side. The demand is adapting in response to the utilization of the
supply system. This allows designing mobility services in a multi-
stakeholder transport system scenario with conquering services.
The proposed method belongs to the last category, including the
system dynamics of co-existing systems for the network design
process.

The authors of this study propose a bi-level optimization
framework to solve the facility location problem at the example of
the distribution of Urban Air Mobility (UAM) vertiports. The
proposed framework is not limited to urban applications it can be
applied to regional scenarios, as shown later in this study. The bi-
level investigation consists of two optimization processes linked
and performed alternatingly. On the outer loop for the network
optimization, a Genetic Algorithm (GA) is used with the Pareto
optimal Non-Dominated Sorting Genetic Algorithm (NSGA-II)
method to identify the best positions for UAM vertiports. The
generated solutions are evaluated on a large-scale activity-based
transport simulation (MATSim) within the inner loop, as shown in
Fig. 1. In this inner loop a Co-Evolutionary Algorithm (CEA)
based optimization is performed within MATSim to adapt the
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Fig. 1 Proposed bi-level optimization framework: UAM
vertiport allocation on outer the layer and transport
simulations on the inner layer.

agents’ activity plans reflecting the induced network changes. The
agents aggregated activity patterns are afterward used for re-
evaluating the network design. This bi-level approach is allowing
to tackle the NDP variant of the Activity-Based Network Design
Problem (AD-NDP), by making it possible to include recoupling
effects of the transport system on the supply and demand side after
adding a new transportation mode effect. Thereby not only the
reactions of the affected agents who use the UAM mode but also
related effects, e.g., congestions due to network capacity or during
rush hours and overall system travel times or resilience, can be
incorporated and used as objectives in the design process. This
integration enables the decision maker to compare optimized
trade-off solutions for scenarios where mobility services must be
designed together with multiple stakeholders.

The proposed framework is unique due to combining a bi-level
approach for solving the network design problem in a multi-
objective optimization approach with a large-scale activity-based
transport simulation problem for solving the UAM vertiport

placement problem.

2. APPROACH

The activity-based transport simulation method with its CEA
optimization is described in 2.1, followed by the multi-objective
optimization approach using a Genetic Algorithm to solve the
Network Design Problem in 2.2.
2.1. Activity-Based Transport Simulation

The evaluation of the network designs is performed on an open-
source platform for Multi-Agent Transport Simulation (MATSim)
(6), which uses an activity-based approach that optimizes through

a co-evolutionary approach the activity chains for a large number

1 github.com/matsim-scenarios/matsim-ile-de-france
2 gvtol.newsfaircraft, accessed 20.01.2022.
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Fig. 2 a) Set of possible vertiport locations based on
Corsica’s population distribution; b) Multi-Objective
Optimization results showing solution for UAM vertiport
network with maximum demand (f;*) and minimum
number of vertiports (f3).

of agents in a 24h period. The MATSim framework and the
scenario are open-source, and a description is available (6, 7). For
our study, we used the available simulation of the region of
Corsica® with a 1% representation of the population using about
3400 agents. The agents can choose from the transportation modes
car, walk, bike, train and bus to complete their daily activities,
depending on individual and spatial accessibility. We extended the
available transportation modes with a UAM system through the
open-source extension MATSIim-UAM from Bauhaus Luftfahrt
(8). It allows for adding infrastructure and a transportation mode
for an aerial mobility service. The configuration of the aerial
vehicles is based on data from the electrical Vertical Take-Off and
Landing (eVTOL) database?, using a mean set of parameters of 4
persons, 500 km range, and 250 km/h cruise speed.

The set of possible vertiport locations is determined beforehand
based on the residence locations of the agents. For that, the
population is separated into 50 clusters and based on a spatial
mean center, possible vertiport locations are derived as shown in
Fig. 2 a). This reflects a realistic constraint of the existing
infrastructure.

The optimized activity chains for each agent are explored
within MATSim's activity-based simulation. This is accomplished
through a CEA approach by mutating, e.g., transportation modes,
start and end times, and activity orders. The generated activity
chains are evaluated based on a utility function, which is, among
other criteria, assessed on the travel time, including transfer times

towards transportation hubs, e.g., Vertiports for using UAM, the
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processing times within a transportations service, e.g., waiting
times for public transport vehicle to arrive or service time for
checking in and out. The fleet management of eVTOLs can be
specified within the MATSim-UAM extension, and each vertiport
can have a defined number of initial eVTOLs parked. During
simulation, once a request at a station is registered, a vehicle is
reserved for the agent, first come, first out. For our scenario, we
relaxed the fleet representation of having a limited number of
vehicles per station and binned passengers registering within a 20-
minute time window for joint trips to estimate the required number
of vehicles.

Iteratively, each agent's activity chain is optimized based on a
utility function calibrated initially on available data of the city's
transport system. The utility function includes, among others also,
time-dependent and independent utility contributions for each
transport mode. A detailed explanation of the design and
calibration of the utility functions is described in [6,7] respectively.
The optimization is terminated when the average utility value
within the transportation system converges, which indicates that
the agents cannot find a better solution. The transport system has
then reached a stable equilibrium state.

2.2. Facility Location Problem

The following problem belongs to the facility location problems,
a subclass of the NDPs, which targets distributing UAM vertiports
by locating supply nodes in a transportation network to serve a
nearby demand best. Comprehensive overviews of existing
variants, including applications, are available from the literature
(1, 3). In contrast to non-bi-level approaches where the static
demand is estimated a priori through models or simulations, our
approach derives the demand individually for each network
adaption from the bi-level activity-based simulation.
Within the outer loop of the bi-level approach a multi-objective
problem formulation is used. The idea of the formulated objectives
is to help operators in designing a UAM network that on the one
side is built to maximize the service utilization and on the other
side minimizes the number of active vertiports for making the
service as efficient as possible. The first objective, the overall
UAM transportation demand maximization is formulated as

max f; = Zdj

jEN
with the UAM mode demand being d; for station j. The second

objective to minimize the number of active UAM vertiports with

x; being 1, if a facility is located at node j and O otherwise. The

previously defined set of possible vertiports locations is N, such
that x; € {0,1},j € N and the objective being:
min f, = Z X
jEN
The constraint for the number of active ports is thereby limited
to be P = 25, where P is defined as Y;en xj < P.

For comparison, we chose a frequently used Heuristic
Coverage Method (HCM) approach as baseline. The set of active
facilities is optimized with the goal to maximize the number of
agents within a predefined covering distance of an active vertiport.

A description of the implementation can be found in literature (2).

3. EVALUATION

Optimizing the facility location problem in the outer loop was
performed on 50 generations with a population of 10 each. The co-
evolutionary optimization within MATSIim was performed for
each of the arround 3400 agents. The co-evolutionary optimization
process is terminated when a system equilibrium is reached,
indicated through the utility value. For our study, the number of
optimization steps within a simulation is limited to ten iterations.
The parameter's average trip distances and trip durations in Fig. 3
during those iterations provide insight into the system's changes to
transport characteristics. The total time traveled decreased while
the total distance traveled increased. This on-first-sight unintuitive
behavior is grounded in the initial path generation being based on
a shortest path algorithm. During optimization, the chosen routes
are replaced routes with improved utility can be found. Therefore,
among other parameters, the route choice, modal choice, and
activity sequence are adapted [6]. This leads to the agents finding
improved paths that, among other things, allow a faster transport

to their goal but may require longer travel distances. For our study,
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Fig. 3 Aggregated distance and time traveled of all agents
with Potential Travel Distance Savings (PTDS).
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we chose that the travel distance saturation marks a satisfactory

system stability to be used for solving our facility location problem.

The difference between the total distance traveled in the first
and tenth iteration shows the Potential Travel Distance Saving
(PTDS) of an existing network. From the user's perspective, in an
ideal traffic scenario, one could take the shortest route with the
shortest travel time, and the PTDS would be zero.

3.1. Results

The non-dominated solutions found by the NSGA-II are f; €
[0,1] and f, € [15,25]. f; is normalized by a maximum UAM
demand of 187. The set of Pareto solutions can be found in Fig. 4,
with a normalized f;. The non-dominated solution for f; can be
derived at the Pareto endpoint F; = (1.0,25) with a vertiport
network of 25 active ports. The non-dominated solution found for
fz is F; =(0.4,15) with a demand of 40 % and 15 active
vertiports. Both found UAM network layouts for F; and F; are
shown in Fig. 2 b). The network design for both networks shows
that the overall reach from north-south and east-west is similar
despite F; having ten additional active vertiports. The network
layout F; suggests that the maximum demand with only 15
vertiports can be achieved by a network covering long distances at
the coastal areas.

A knee point solution within the Pareto set for the shown
weighted approach would be Fy = (0.9,19) . This trade-off
solution balances the minimization of vertiports and the demand
and allows finding profitable service designs if cost and revenue
structures are integrated into the parameterization. The
corresponding network layout for Fy is shown in Fig 5 b). The
network maintains a similar north-south and east-west reach as
F{ and F; but with only 19 vertiports it has a different
configuration in between.

To compare the bi-level approach AB-NDP with the static
facility location approach HCM, the HCM is applied on a single
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Fig. 4 Found solutions of the NSGA-II in the Pareto set.

Fig. 5 UAM networks with 19 vertiports a) Heuristic
Coverage Method (HCM) b) tradeoff solution of bi-level
optimization F; (AB-NDP).

iteration of the simulation. For comparison, the number of
vertiports is specified to the number found for the knee point
solution F;(:,19).

The UAM demand shown in Table 1 is normalized with the
maximum found UAM demand from F;". The Total Travel Time
Saving (TTTS) are the aggregated travel times across all modes.
The travel times are normalized with the total travel time without
a UAM transportation mode being available.

The solution from the AB-NDP approach shows a higher UAM
demand than the HMC approach’s solution by 19 %. The HMC
UAM network in Fig. 5 a) indicates a more compact design than
Fy from Fig. 5 b). This is partly due to the HMC relying only on
static locational information. In contrast, the AB-NDP has
additional dynamic information about the activity locations of the
agents, e.g., about their work, educational, or leisure areas, that are
indirectly utilized within the bi-level framework. Additionally, the
comparison of TTTS shows an improvement compared to a
transport system without a UAM transportation mode. For the AB-
NDP solution, the TTTS will increase by around 7.27 %, whereas
for the HMC, it will only increase by 5.65 %. This shows the UAM
transportation mode's effect beyond solving the vertiport location
problem.

The bi-level optimization framework AB-NDP shows better
results than the HMC method for the investigated parameters and

positively affects the overall transportation system.

Table 1 UAM demand normalized with F;'; Total Travel
Time (TTT) normalized with TTT w/o UAM mode.

| Demand, % | TTTS, %
AB-NDP (f}) 89.98 7.27
HMC 70.97 5.65

Copyright © 2022 Society of Automotive Engineers of Japan, Inc.



EVTeC 2023
6™ International Electric Vehicle Technology Conference 2023

4. CONCLUSION

Within this study a new bi-level approach was proposed to
solve the facility location problem from the AB-NDP group with
a large-scale, open-source transport simulation at the example of
finding optimal positions for UAM vertiports. The NDP was
solved with an NSGA-II approach investigating the objectives of
minimal network size and maximum UAM demand. When
parameterized correctly, the method allows designing a service to
cover a maximum demand with a minimum network size. The
demand was derived through the activity-based transport
simulation MATSim. The dynamic demand changes and their
effects on the transport supply network were incorporated into the
design process.

An HCM without a bi-level coupling was used for comparison
as a baseline. The results from the activity based approach were
superior for the investigated mode-specific UAM demand and
transportation system-wide TTTS benchmark parameters.

Although adding a large-scale traffic simulation to a classical
network design problem increases complexity by requiring
additional expertise for activity-based simulations, it enables a
holistic approach by incorporating co-existing system stakes into
the mobility service planning process. Particularly for network
design problems strongly influenced by the infrastructure of other
transportation systems, like sharing or swapping services, the bi-
level approach presented can provide a solution to design a service
that is integrated into an existing multimodal transportation

network.
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