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ABSTRACT: The design or the optimization of transport systems is a difficult task. This is especially true in the case of the introduction 

of new transport modes in an existing system. The main reason is, that even small additions and changes result in the emergence of new 

travel patterns, likely resulting in an adaptation of the travel behavior of multiple other agents in the system. Here we consider the 

optimization of future Urban Air Mobility services under consideration of effects induced by the new mode to an existing system. We 

tackle this problem through a bi-level network design approach, in which the discrete decisions of the network design planner are optimized 

based on the evaluated dynamic demand of the user's mode choices. We solve the activity-based network design problem (AB-NDP) using 

a Genetic Algorithm on a multi-objective optimization problem while evaluating the dynamic demand with the large-scale Multi-Agent 

Transport Simulation (MATSim) framework. The proposed bi-level approach is compared against the results of a coverage approach using 

a static demand method. The bi-level study shows better results for expected UAM demand and total travel time savings across the 

transportation system. Due to its generic character, the demonstrated utilization of a bi-level method is applicable to other mobility service 

design questions and to other regions. 
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1. INTRODUCTION 

Network design problems (NDP) have been a research subject 

for a long time (1, 2). They are relevant to many different domains, 

including transportation, telecommunications, logistics, and 

economics, to name a few. Especially with the changing mobility 

landscape and the emergence of new multi-modal transport 

systems, the network design question is still very relevant. One 

complexity of network designs is that on first sight some effects 

can seem counterintuitive. See Braess’ Paradox, which 

demonstrates how the overall traffic flow can be slowed by adding 

more roads to a transport network.  

Network design investigations can be grouped according to their 

degree of including transport dynamics, ranging from approaches 

focusing on methodological aspects to holistic representation of 

multi-stakeholder aspects. The first group of methods for solving 

NDPs (3) can be described as single-level approaches that 

investigate network designs, with only static or partial dynamic 

information of the transport system, often used when examining 

optimization algorithms (4,5). The second group utilizes bi-level 

approaches that also incorporate the supply side of the transport 

system in the design process through models or simulation 

methods, including dynamics as congestion effects and sometimes 

also an adaption of the agents' route choices during the design 

process. A third group for solving NDPs are the bi-level 

approaches that incorporate also dynamic demand information of 

the transport system in addition to including the dynamic supply 

side. The demand is adapting in response to the utilization of the 

supply system. This allows designing mobility services in a multi-

stakeholder transport system scenario with conquering services. 

The proposed method belongs to the last category, including the 

system dynamics of co-existing systems for the network design 

process.   

The authors of this study propose a bi-level optimization 

framework to solve the facility location problem at the example of 

the distribution of Urban Air Mobility (UAM) vertiports. The 

proposed framework is not limited to urban applications it can be 

applied to regional scenarios, as shown later in this study. The bi-

level investigation consists of two optimization processes linked 

and performed alternatingly. On the outer loop for the network 

optimization, a Genetic Algorithm (GA) is used with the Pareto 

optimal Non-Dominated Sorting Genetic Algorithm (NSGA-II) 

method to identify the best positions for UAM vertiports. The 

generated solutions are evaluated on a large-scale activity-based 

transport simulation (MATSim) within the inner loop, as shown in 

Fig. 1. In this inner loop a Co-Evolutionary Algorithm (CEA) 

based optimization is performed within MATSim to adapt the 
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agents’ activity plans reflecting the induced network changes. The 

agents aggregated activity patterns are afterward used for re-

evaluating the network design. This bi-level approach is allowing 

to tackle the NDP variant of the Activity-Based Network Design 

Problem (AD-NDP), by making it possible to include recoupling 

effects of the transport system on the supply and demand side after 

adding a new transportation mode effect. Thereby not only the 

reactions of the affected agents who use the UAM mode but also 

related effects, e.g., congestions due to network capacity or during 

rush hours and overall system travel times or resilience, can be 

incorporated and used as objectives in the design process. This 

integration enables the decision maker to compare optimized 

trade-off solutions for scenarios where mobility services must be 

designed together with multiple stakeholders.  

The proposed framework is unique due to combining a bi-level 

approach for solving the network design problem in a multi-

objective optimization approach with a large-scale activity-based 

transport simulation problem for solving the UAM vertiport 

placement problem. 

 

2. APPROACH  

The activity-based transport simulation method with its CEA 

optimization is described in 2.1, followed by the multi-objective 

optimization approach using a Genetic Algorithm to solve the 

Network Design Problem in 2.2. 

2.1. Activity-Based Transport Simulation 

The evaluation of the network designs is performed on an open-

source platform for Multi-Agent Transport Simulation (MATSim) 

(6), which uses an activity-based approach that optimizes through 

a co-evolutionary approach the activity chains for a large number 

 
1 github.com/matsim-scenarios/matsim-ile-de-france 
2 evtol.news/aircraft, accessed 20.01.2022. 

of agents in a 24h period. The MATSim framework and the 

scenario are open-source, and a description is available (6, 7). For 

our study, we used the available simulation of the region of 

Corsica1 with a 1% representation of the population using about 

3400 agents. The agents can choose from the transportation modes 

car, walk, bike, train and bus to complete their daily activities, 

depending on individual and spatial accessibility. We extended the 

available transportation modes with a UAM system through the 

open-source extension MATSim-UAM from Bauhaus Luftfahrt 

(8). It allows for adding infrastructure and a transportation mode 

for an aerial mobility service. The configuration of the aerial 

vehicles is based on data from the electrical Vertical Take-Off and 

Landing (eVTOL) database2, using a mean set of parameters of 4 

persons, 500 km range, and 250 km/h cruise speed.  

The set of possible vertiport locations is determined beforehand 

based on the residence locations of the agents. For that, the 

population is separated into 50 clusters and based on a spatial 

mean center, possible vertiport locations are derived as shown in 

Fig. 2 a). This reflects a realistic constraint of the existing 

infrastructure. 

The optimized activity chains for each agent are explored 

within MATSim's activity-based simulation. This is accomplished 

through a CEA approach by mutating, e.g., transportation modes, 

start and end times, and activity orders. The generated activity 

chains are evaluated based on a utility function, which is, among 

other criteria, assessed on the travel time, including transfer times 

towards transportation hubs, e.g., Vertiports for using UAM, the 

Fig. 1 Proposed bi-level optimization framework: UAM 

vertiport allocation on outer the layer and transport 

simulations on the inner layer. 
Fig. 2 a) Set of possible vertiport locations based on 

Corsica’s population distribution; b) Multi-Objective 

Optimization results showing solution for UAM vertiport 

network with maximum demand ( 𝑓1
∗ ) and minimum 

number of vertiports (𝑓2
∗). 
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processing times within a transportations service, e.g., waiting 

times for public transport vehicle to arrive or service time for 

checking in and out. The fleet management of eVTOLs can be 

specified within the MATSim-UAM extension, and each vertiport 

can have a defined number of initial eVTOLs parked. During 

simulation, once a request at a station is registered, a vehicle is 

reserved for the agent, first come, first out. For our scenario, we 

relaxed the fleet representation of having a limited number of 

vehicles per station and binned passengers registering within a 20-

minute time window for joint trips to estimate the required number 

of vehicles.  

Iteratively, each agent's activity chain is optimized based on a 

utility function calibrated initially on available data of the city's 

transport system. The utility function includes, among others also, 

time-dependent and independent utility contributions for each 

transport mode. A detailed explanation of the design and 

calibration of the utility functions is described in [6,7] respectively. 

The optimization is terminated when the average utility value 

within the transportation system converges, which indicates that 

the agents cannot find a better solution. The transport system has 

then reached a stable equilibrium state. 

 

2.2. Facility Location Problem 

The following problem belongs to the facility location problems, 

a subclass of the NDPs, which targets distributing UAM vertiports 

by locating supply nodes in a transportation network to serve a 

nearby demand best. Comprehensive overviews of existing 

variants, including applications, are available from the literature 

(1, 3). In contrast to non-bi-level approaches where the static 

demand is estimated a priori through models or simulations, our 

approach derives the demand individually for each network 

adaption from the bi-level activity-based simulation. 

Within the outer loop of the bi-level approach a multi-objective 

problem formulation is used. The idea of the formulated objectives 

is to help operators in designing a UAM network that on the one 

side is built to maximize the service utilization and on the other 

side minimizes the number of active vertiports for making the 

service as efficient as possible. The first objective, the overall 

UAM transportation demand maximization is formulated as 

max 𝑓1 = ∑ 𝑑𝑗

𝑗∈𝑁

 

with the UAM mode demand being 𝑑𝑗  for station 𝑗. The second 

objective to minimize the number of active UAM vertiports with 

xj being 1, if a facility is located at node j and 0 otherwise. The 

previously defined set of possible vertiports locations is 𝑁, such 

that 𝑥𝑗 ∈ {0,1}, 𝑗 ∈ 𝑁 and the objective being: 

min 𝑓2 =  ∑ 𝑥𝑗

𝑗∈𝑁

. 

The constraint for the number of active ports is thereby limited 

to be 𝑃 = 25, where 𝑃 is defined as ∑ 𝑥𝑗j∈N ≤ 𝑃.  

For comparison, we chose a frequently used Heuristic 

Coverage Method (HCM) approach as baseline. The set of active 

facilities is optimized with the goal to maximize the number of 

agents within a predefined covering distance of an active vertiport. 

A description of the implementation can be found in literature (2). 

 

3. EVALUATION 

Optimizing the facility location problem in the outer loop was 

performed on 50 generations with a population of 10 each. The co-

evolutionary optimization within MATSim was performed for 

each of the arround 3400 agents. The co-evolutionary optimization 

process is terminated when a system equilibrium is reached, 

indicated through the utility value. For our study, the number of 

optimization steps within a simulation is limited to ten iterations. 

The parameter's average trip distances and trip durations in Fig. 3 

during those iterations provide insight into the system's changes to 

transport characteristics. The total time traveled decreased while 

the total distance traveled increased. This on-first-sight unintuitive 

behavior is grounded in the initial path generation being based on 

a shortest path algorithm. During optimization, the chosen routes 

are replaced routes with improved utility can be found. Therefore, 

among other parameters, the route choice, modal choice, and 

activity sequence are adapted [6]. This leads to the agents finding 

improved paths that, among other things, allow a faster transport 

to their goal but may require longer travel distances. For our study, 

Fig. 3 Aggregated distance and time traveled of all agents 

with Potential Travel Distance Savings (PTDS). 
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we chose that the travel distance saturation marks a satisfactory 

system stability to be used for solving our facility location problem.  

The difference between the total distance traveled in the first 

and tenth iteration shows the Potential Travel Distance Saving 

(PTDS) of an existing network. From the user's perspective, in an 

ideal traffic scenario, one could take the shortest route with the 

shortest travel time, and the PTDS would be zero. 

 

3.1. Results 

The non-dominated solutions found by the NSGA-II are 𝑓1 ∈

[0,1]  and  𝑓2 ∈ [15,25]. 𝑓1  is normalized by a maximum UAM 

demand of 187. The set of Pareto solutions can be found in Fig. 4, 

with a normalized 𝑓1. The non-dominated solution for 𝑓1 can be 

derived at the Pareto endpoint 𝐹1
∗ = (1.0, 25)  with a vertiport 

network of 25 active ports. The non-dominated solution found for 

𝑓2  is 𝐹2
∗ = (0.4, 15)  with a demand of 40 %  and 15 active 

vertiports. Both found UAM network layouts for  𝐹1
∗ and 𝐹2

∗ are 

shown in Fig. 2 b). The network design for both networks shows 

that the overall reach from north-south and east-west is similar 

despite 𝐹1
∗  having ten additional active vertiports. The network 

layout 𝐹2
∗  suggests that the maximum demand with only 15 

vertiports can be achieved by a network covering long distances at 

the coastal areas. 

A knee point solution within the Pareto set for the shown 

weighted approach would be 𝐹𝑘
∗ = (0.9,19) . This trade-off 

solution balances the minimization of vertiports and the demand 

and allows finding profitable service designs if cost and revenue 

structures are integrated into the parameterization. The 

corresponding network layout for 𝐹𝑘
∗ is shown in Fig 5 b). The 

network maintains a similar north-south and east-west reach as 

𝐹1
∗ and 𝐹2

∗  but with only 19 vertiports it has a different 

configuration in between.  

To compare the bi-level approach AB-NDP with the static 

facility location approach HCM, the HCM is applied on a single 

iteration of the simulation. For comparison, the number of 

vertiports is specified to the number found for the knee point 

solution 𝐹𝑘
∗(: ,19). 

The UAM demand shown in Table 1 is normalized with the 

maximum found UAM demand from 𝐹1
∗. The Total Travel Time 

Saving (TTTS) are the aggregated travel times across all modes. 

The travel times are normalized with the total travel time without 

a UAM transportation mode being available. 

The solution from the AB-NDP approach shows a higher UAM 

demand than the HMC approach's solution by 19 %. The HMC 

UAM network in Fig. 5 a) indicates a more compact design than 

𝐹𝑘
∗ from Fig. 5 b). This is partly due to the HMC relying only on 

static locational information. In contrast, the AB-NDP has 

additional dynamic information about the activity locations of the 

agents, e.g., about their work, educational, or leisure areas, that are 

indirectly utilized within the bi-level framework. Additionally, the 

comparison of TTTS shows an improvement compared to a 

transport system without a UAM transportation mode. For the AB-

NDP solution, the TTTS will increase by around 7.27 %, whereas 

for the HMC, it will only increase by 5.65 %. This shows the UAM 

transportation mode's effect beyond solving the vertiport location 

problem.  

The bi-level optimization framework AB-NDP shows better 

results than the HMC method for the investigated parameters and 

positively affects the overall transportation system. 

 

Table 1 UAM demand normalized with 𝐹1
∗; Total Travel 

Time (TTT) normalized with TTT w/o UAM mode. 

 Demand, % TTTS, % 

AB-NDP (𝒇𝒌
∗ ) 89.98 7.27 

HMC 70.97 5.65 

Fig. 5 UAM networks with 19 vertiports a) Heuristic 

Coverage Method (HCM) b) tradeoff solution of bi-level 

optimization 𝐹𝑘
∗ (AB-NDP). 

Fig. 4 Found solutions of the NSGA-II in the Pareto set. 
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4. CONCLUSION 

Within this study a new bi-level approach was proposed to 

solve the facility location problem from the AB-NDP group with 

a large-scale, open-source transport simulation at the example of 

finding optimal positions for UAM vertiports. The NDP was 

solved with an NSGA-II approach investigating the objectives of 

minimal network size and maximum UAM demand. When 

parameterized correctly, the method allows designing a service to 

cover a maximum demand with a minimum network size. The 

demand was derived through the activity-based transport 

simulation MATSim. The dynamic demand changes and their 

effects on the transport supply network were incorporated into the 

design process. 

An HCM without a bi-level coupling was used for comparison 

as a baseline. The results from the activity based approach were 

superior for the investigated mode-specific UAM demand and 

transportation system-wide TTTS benchmark parameters. 

Although adding a large-scale traffic simulation to a classical 

network design problem increases complexity by requiring 

additional expertise for activity-based simulations, it enables a 

holistic approach by incorporating co-existing system stakes into 

the mobility service planning process. Particularly for network 

design problems strongly influenced by the infrastructure of other 

transportation systems, like sharing or swapping services, the bi-

level approach presented can provide a solution to design a service 

that is integrated into an existing multimodal transportation 

network. 
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