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ABSTRACT: For electric scooters, battery swapping is a promising alternative to battery charging due to the lower weight

and volume of their batteries that allows a manual replacement at battery swapping stations. Mobile batteries are shared

between all users and the target of the operator is therefore to maximize the customer satisfaction while minimizing system

set-up and operation costs. Here we give an overview of Honda’s activities for a Battery as a Service (BaaS) business in

Indonesia, Philippines and India, while looking specifically at the optimal placement of battery swapping stations with a given

customer demand. Multiple objectives like set-up cost, energy costs, and customer detours are considered. We employ a Large

Neighborhood Search (LNS) approach that uses specific destroy and repair operators for each objective and includes a Mixed

Integer Linear Programming (MILP) element for repairing solutions. Our results show that the employed LNS outperforms a

state-of-the-art pure MILP approach for larger problem sizes with up to 500 potential station locations and 1000 trips. Overall

10-30% better results compared to standard approaches can be obtained.
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1. INTRODUCTION

One of the main challenges for the wider adoption of electric
mobility is the limited range and long recharging times of electric
vehicles. For smaller vehicles like scooters, however, batteries can
be small and light-weighted enough, to allow for a manual
replacement of depleted batteries by fully-charged ones, instead of
charging these batteries at charging stations, which often takes
hours. A mobility service would need to provide a pool of shared
portable batteries that customers can exchange at battery swapping
stations (BSS).

One major cost factor is the number of required batteries and
BSS to provide a high service level. In this work we focus on
optimizing the number, location (placement), and dimensioning of
BSSs in order to provide maximum service quality, as well as

minimizing the setup and operation costs of the BSS system. The

optimization goals are combined in a linear fashion with different
weights, yielding the total objective function to be optimized.

Such problems are typically approached by first collecting
information about expected customer demand, for example in the
form of O/D (origin-destination) pairs, representing typical routes
people use in their daily lives. This data can be derived from
various sources like customer surveys, traffic monitoring, or city
census data. Another approach (3) is to directly ask potential users
to rate possible service station locations. In this work we assume
O/D pairs to be given.

Then, based on the collected data, the placement of BSS is
determined. Typically, the system operator wants to install a
certain number of BSS given a larger number of potential
candidate locations considering installation costs, maintenance
costs and customer satisfaction (e.g., minimizing the detours

customers need to take to reach the next BSS). The problem is
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therefore a combinatorial optimization problem, similar in
structure to other problems in Operations Research. Interestingly
many fleet-management and EV charging algorithms fall into the
same category. For solving this type of problem, very efficient
algorithms (like Mixed Integer Linear Programming, MILP) exist
that can find the optimal solution, in our case the best selection of
BSS locations to optimize the given cost and customer satisfaction
function. A severe problem, however, is the computational scaling
of these approaches. Algorithm runtime and computer memory
requirements grow quickly with the size of the business (station
locations, number of BSS, and considered O/D pairs). For larger
businesses with 1000s of BSS (or even more) other approaches are
needed, that trade optimality for lower run-time.

In this article we employ a heuristic algorithm, a Large
Neighborhood Search (LNS) for this task. For each of the
optimization goals (minimizing system set-up and operation costs
and maximizing service quality) we design specific destroy and
repair operators (elements of the LNS algorithm) with which the
LNS generates optimized solutions.

We report results for artificial data (test instances can be
downloaded from ') generated by adopting approaches from
literature, but for the real service described below obviously

various other sources have been used, based on availability.

2. BaaS in Indonesia, Philippines, India and Japan
2.1. Battery as a Service (BaaS)

South and south-east Asia are two world regions with a large
and quickly growing mobility demand based on light vehicles like
scooters, commuter motorcycles and rickshaws. Electrification of
this market is essential to reach global climate protection goals and
to improve local air quality. Therefore, each country has begun to
impose regulations to reduce CO: emissions. For example,
Indonesia is facing the problem of air pollution caused by
increased traffic, and in 2012 it tightened its motorcycle emission
regulations. On the other hand, international greenhouse gas
emission standards, such as the Greenhouse Gas Protocol
formulated mainly by WBCSD (World Business Council for
Sustainable Development) and WRI (World Resources Institute),
have recently been established. In such a situation, Honda’s aim is
to make 100 percent of automobile sales battery-electric vehicles

(EVs) and fuel cell electric vehicles (FCVs) by 2040.

1 https://www.ac.tuwien.ac.at/research/problem-
instances/#Battery_Swapping_Station_Location_Problem_BSSL
P

In addition to electric vehicles also a convenient, clean,
affordable, and scalable battery charging solution is required, for
which BaasS is a proposed solution. In the BaaS provided by Honda,
users can visit the nearest BSS when the battery level is low,
remove the used battery from the vehicle, insert it into the BSS,
and immediately receive a charged battery. This would allow users
to drive continuously without worrying about recharging time, and
with BSS being installed throughout the city, they would not have
to worry about cruising distance. Furthermore, if batteries can be
shared, for example by using them in other devices when the
vehicle is not in use, or mass production can be achieved by
unifying battery standards, battery costs could be reduced.
Moreover, combining renewable energy and communication
technologies to manage electric vehicles use and battery

recharging could lead to cleaner and more efficient mobility.

2.2. Pilot project and Main project

Honda had conducted BaaS pilot project in Indonesia (a project
subsidized by NEDO), Philippines (a project subsidized by the
Japanese Ministry of the Environment) and India. We have had
motorcycles (2-wheel) and rickshaws (3-wheel) used for personal
use (B2C) and mail, food delivery, and taxies (B2B) to identify
issues and verify business feasibility. The battery packs that have
been used in the pilot project can store data while driving. We
constructed a system that, when a battery is inserted into the BSS
(Figure 1), this data is transmitted to the cloud together with
information on the BSS. By analyzing this data, we have been
studying and verifying the demand for swapping, the user

experience, and what kind of use is expected.

Figure 1: BSS (Honda Mobile Power Pack Exchanger) used in
the pilot project®

2 https://www.honda.co.jp/environment/hoteyes/hoteyes233.html
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Figure 2: BSS and electric scooters in the Philippines’.

Honda has developed the battery pack "Honda Mobile Power
Pack e:" (Figure 3) and BSS "Honda Power Pack Exchanger e:"
(Figure 4) based on the knowledge gained from these pilot
projects. Honda established HEID (Honda Power Pack Energy
India%), a local subsidiary in India for the purpose of Baa$ business,
installed Honda Power Pack Exchanger e: in the city of Bengaluru,
and provides sharing services for Honda Mobile Power Pack e:. In
cooperation with rickshaw manufacturers, we plan to begin
operations in a limited number of cities and gradually expand to
other areas. In addition, we plan to launch BaaS business using

these products in other countries including Japan.

< Specifications of Honda Mobile Power Pack e:>

External dimensions (mm) Approx. 298x177.3x156.3

Battery type Lithium-ion battery
Rated voltage Approx. 50.26V
Rated capacity 26.1AW/1314Wh

Weight 10.3kg

Charging time

Figure 3: Key features of Honda Mobile Power Pack e:®

Approx. 5 hours

Control Unit | Extension Unit
Product name

(C-BEX) (Ex-BEX)
Compatible battery Honda Mobile Power Pack ¢:
Frequency (Hz) 50/60
Rated power consumption (kW) 65
Weight (kg) 361 360

External dimensions

WxHxD 960 % 1,820 X 758
(mm)

Japan model: 3-phase 2-wire 200

Connecting power supply (V) | 1 32 model: 3-phase 4-wire 400

Cooler [} (e}

Monitor

‘communication function

o
o —
o =

NFC authentication device

Figure 4: Key features of Honda Power Pack Exchanger e:%

2.3. Challenges of BaaS

3 https://www.honda.co.jp/environment/hoteyes/hoteyes233.html
4 https://www.honda-mpp.com/in/

5 https://global.honda/newsroom/news/2021/c211029beng.html

6 https://global.honda/newsroom/news/2022/p221025eng. html

The demand distribution of swaps actually obtained in the pilot
project is shown in the Figure 5. This is the actual swapping in
Romblon Island in the Philippines. The swapping is concentrated
in some BSS, indicating that the frequency of use is highly
unbalanced. This unbalanced frequency of use was not limited to
Romblon Island but was observed in all regions. Since a small
number of BSS are sufficient for locations that are used
infrequently, asset costs can be reduced by reducing the number of
installations in such locations. On the other hand, in developing a
sharing business, it is important that a sufficient number of BSS
are installed throughout the city and that users can access them
when they want to swap. Therefore, it is necessary to provide a
number of BSS and convenient station locations that meet demand.

In order to minimize the number of assets without
compromising user convenience, it is desirable to equalize the

number of swaps by layout optimization
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Figure 5: Number of swaps per BSS in a month in the
Philippines.”

3. Layout Optimization Algorithm

The problem we address is the optimal placement of a
service stations in a defined area aiming to maximize user
satisfaction and minimizing operational costs. This problem
can be expressed and solved as a mixed integer linear
programming (MILP) problem. MILP solvers usually perform
well for hard problem instances up to a certain size, but for
larger problem sizes the time needed to find an optimal

solution exceeds any acceptable limit and the performance

7 “Development of Honda Mobile Power Pack and

Demonstration Projects for the Battery”, Society of Automotive
Engineers of Japan, Vol. 74, No. 2, 2020
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deteriorates quickly after a certain point. Even with careful
problem formulation and the usage of state-of-the-art solvers®
relevant problem sizes cannot be handled in an acceptable
amount of time. While this is not a problem for pilot studies, it
becomes critical for any reasonable real-world business.

We therefore employ heuristic methods to find approximate
solutions for larger problem instances, more specifically, a
Large Neighborhood Search (LNS) hybridized with a MILP
approach is applied.

Large Neighborhood Search (5) is a prominent
metaheuristic  for addressing difficult combinatorial
optimization problems, which builds upon effective lower-
level heuristics.

A basic LNS in essence follows a classical local search
framework, but much larger neighborhoods (in search space)
are considered in each iteration. The key-idea is to search these
neighborhoods not in a naive enumerative way but to apply
some more efficient problem-specific procedure to solve the
subproblem induced by each neighborhood in order to obtain
the best or a promising heuristic solution from the
neighborhood.

Our LNS follows a so-called destroy and repair scheme: A
current incumbent solution is partially destroyed, typically by
freeing a subset of the decision variables and fixing the others
to their current values, and then repaired again by finding best

or at least promising values for the freed variables.

Destroy Operator

L X Refine Large Timeout
Initial solution C———)»  Neighborhood ~[————) Finalsolution
Search

J

Repair Operator

Figure 6: Basic LNS procedure.

Figure 6 shows a visualization of this procedure. The LNS
proposed in this article removes in each of its iterations a set
Lgestroy () of the BSS from the current solution x and then
repairs the solution by solving a MILP that considers not all
available stations but only a small, promising set of candidate
stations Lyepajr- Note that destroy and repair schemes do not

refer to real world operations, but only virtual operations inside

8 https://www.gurobi.com

the optimization algorithm while searching for the best
possible solution.

For each optimization goal specific destroy and repair
operators are designed that decide which stations should be

contained in Lyestroy (x) and Lyepair-

The destroy operators remove stations from the current
solution that are the least important with respect to their
respective optimization goal. The repair operators select the
stations that are most likely to improve the respective
optimization goal when added to the solution.

The operators are combined in one of two ways: Each
operator can either be chosen uniformly at random in each
LNS iteration, or all operators are combined in a linear fashion
(mixed) to select the most promising stations with respect to all
optimization goals. For further details on the destroy and repair

operators we refer to (6).

4. RESULTS

We test our LNS on artificial instances generated by adopting
approaches from literature (1,2) . We consider six groups of
instances with a different number of possible station locations n
and O/D pairs m. Each group contains 30 instances. For details on
how the instances were generated, see (6).

The proposed LNS was implemented in Julia 1.6 using Gurobi
9.1 as underlying MILP solver. All test runs have been executed
on an Intel Xeon E5-2640 v4 2.40GHz machine in single-threaded
mode with a global time limit of one hour per run.

On each instance, we test three different weight configurations
(Xsetup » Xoperation » Aservice) for combining the optimization
goals (setup and operation costs as well as service quality) in a
linear fashion. Specifically, we set @etup» Xoperation 0 0.01 and
test different values for @spppice € {0.1,1,10}. Therefore, in the
remainder of this section a configuration will be indicated by
Agservice Only. Effectively, Qgerpice specifies the relative
importance of service level relative to setup and operation costs.

For the LNS the size of Lyestroy (x) and Lyepair Was set to five
for all experiments.

The quality of solutions is evaluated in terms of optimality gaps
to the best lower bounds obtained by trying to solve the problem
as a MILP within a time limit of one hour. A gap value of zero

means that an optimal solution was found, while larger gaps mean
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that that there should be better solutions in terms of cost and
service level that could not be identified.

Figures 7-9 compare the performance of the LNS to other
approaches for different values of @seppice- TWo LNS variants are
considered here. The variant “random” applies in each iteration
one of the destroy and repair operators chosen uniformly at
random (so the approach is random only for the selection of the
specific operator in each iteration of the search.). The variant
“mixed” combines all the proposed operators in a linearly
weighted fashion using the weights @seryp » operation » and
Aservice-

The LNS variants are compared to solutions generated by the
initial construction heuristic, denoted by CH, as well as solutions
obtained by Gurobi within one hour, denoted by MILP.

The initial construction heuristic generates a solution by first
solving the LP relaxation of the problem and then repairing the
solution afterwards. More specifically, we generate a solution
under the assumption that the number of stations and their number
of battery-exchange modules is continuous instead of integer.
Such a relaxed problem can in general be solved faster than the
original problem with integral variable domains. To eventually
transform the solution to the relaxed problem into a feasible
solution, the basic idea is to round up all fractional values.
However, there might be a limit on the number of stations and
battery-exchange modules that can be built and naively rounding
up all fractional values might result in an infeasible solution. To
overcome this issue, care is taken to not exceed these limits and
some values are thus rounded down instead of up to ultimately
guarantee feasibility. Afterwards, the assignment of customer
demand to the stations is recalculated based on the solution
obtained after rounding. For a more detailed description of this
procedure see (6).

Starting from instances with n=200 and m=400, both LNS
variants are able to consistently achieve superior results with up
to 29% lower objective values than those obtained by the MILP
approach. Moreover, we can see that the LNS strongly improves
the initial solution obtained by the construction heuristic.

The state-of-art MILP approach finds (near) optimal solutions
for small problem instances (business sizes) but falls behind even
simple heuristics (like CH) for larger problems sizes.

Optimality gaps generally increase with growing instance size
and growing Qgerpice value for the tested LNS variants. For
Agervice = 0.1, the mixed variant performs slightly better than the

random variation.

For @gerpice = 10 (very strong weight on providing a high
service quality) the mixed strategy can obtain results up to 3%
better on average than the random strategy.

We performed one-sided Wilcoxon signed-rank tests between
the solutions obtained by the two LNS variants.

For almost all instance groups and values of @gerpice, the mixed
strategy achieved statistically significantly better results than the

random strategy within a 95% confidence interval.
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Figure 7: Comparison of the LNS variations to other approaches
With ®serpice = 0.01
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Figure 8: Comparison of the LNS variants to other approaches
with Qgerpice = 1.0.
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Figure 9: Comparison of the LNS variants to other approaches
With &gerpice = 10.0.

5. CONCLUSION

Battery as a Service (BaaS) is a promising approach for de-
carbonizing light vehicles. A key challenge for this type of system
is deciding on the best number and placement of battery swapping
stations (BSS) to minimize set-up costs and maximize customer
satisfaction.
Problems of this type are typically solved using MILP-based
approaches, that, however, become computationally infeasible
beyond a few hundred potential station locations and considered
customer routes. Using a metaheuristic approach (LNS) we could
show that problems with 500 locations and 1000 O/D pairs can be
solved with good performance. Compared to a state-of-art MILP
approach the solution quality, a combination of installation &
operation costs and customer satisfaction, can be improved by up
to almost 30%.
We are currently investigating a multi-level optimization approach
for handling even larger problem sizes, that scales to problems up
to two orders of magnitude larger (4). This approach works by first
merging locations and O/D pairs on a coarser resolution multiple
times until it can be solved with exact or heuristic approaches and
then projecting the solution back to the original resolution.
Using computational methods for optimizing the system layout
can be a very efficient and low cost approach to substantially
reduce costs while at the same time providing a high service
quality to customers. Honda's BaaS business in India determined
the installation location based on the optimized installation
location obtained by this method, and in the future, the
effectiveness of this method will be verified through the data

collected in the project.
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