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ABSTRACT: This report shows the control algorithm and performance of the Predictive EV Drive and its benefit on fuel

efficiency in real life. This control switches over the driving modes automatically depending on road load, battery level

and traffic conditions. Furthermore, the application of this control for geo-fencing is also shown in this report. In order to

achieve these functions, navigation system and plug-in hybrid control has been newly developed.
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1. Introduction

In order to contribute to the improvement of real-world fuel
efficiency of HEVs and PHEVs towards carbon neutrality, "PED-
Predictive Efficient Drive" has been developed. It aims more
efficient State Of Charge (SOC) management by predicting
driving conditions and driver’s behavior in cooperation with
connected navigation technology.
Predictive EV Drive predicts traffic conditions and road load
towards the destination set by the driver. It formulates a real-
time control plan based on the current battery level and switch
over between electric and hybrid driving - to improve fuel
efficiency. Further explanation is about control architecture and
benefit.

2. Predictive EV Drive

2.1 Improvement for current PHEV behavior

In order to use up all the battery energy which is charged by
plugging-in, electric driving is performed when such charged
power is available. And hybrid driving (with engine support) is
automatically performed when the battery energy is low. When
engine power output is low in hybrid mode, efficiency is
generally low. The engine efficiency is generally better on
highways and uphill than in urban areas and traffic jams.
Therefore, as an example shown in Fig.1 - current PHEV can be
more efficient by driving in hybrid mode at uphill.

Toyota PHEV:
EV mode is automatically selected
when battery is enough charged.

» l’-l' lJ—L-
EV mode HV mode

>

This doesn’t work well in some cases.

Uphill Flat road L . ..
gl - EV driving on high power and HV driving
~EV mode HV'mode op Jow power is not good efficiency.

Fig.1: Current Toyota PHEV behavior

2.2 Aim of Predictive EV Drive

To improve the above situation, this control shifts into the hybrid
driving in high road load areas (highway, uphill, etc.) and
chooses electric driving in low road load areas (urban, traffic
jam, etc.) - to improve real world fuel efficiency by optimizing

the use of charged battery energy (See Fig.2).

EV or HV mode 15 selected based on predictive information

Urban area Mountain Road
f~ A9 A ,
HV mode EV mode HV mode EV mode

Fig.2: Image of Predictive EV Drive
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In order to manage SOC control for the entire route, predicting
the route information until destination is necessary. Therefore,
this control is activated when route guidance is set in Toyota
navigation system.

Fig.3 shows the customer journey with Predictive EV Drive.
This control changes the driving mode automatically between EV
and HV mode in order to consume all remaining energy in the
battery when arriving at the destination.

The result of this control system is displayed at the destination.

Set destination Drive Arrive destination

s0C

B oo

Without PED
PED

eV HY v
Predictive
Driving power — 0 " Lo

Fig.3: Customer journey with Predictive EV Drive

2.3 Control architecture

The navigation system takes care of calculating road load
towards the destination and creates predictive information which
can be shared with hybrid ECU.

The hybrid ECU performs vehicle mode planning and execution
of control based on the current battery level and available

predictive information (See Fig.4).

Predictive EV Drive | | H¥brid ECU

Navigation system

Road Load Caleulation

=
]
— of current X
' m Lec‘_‘"‘m Ld."\uug Power e
‘ = [T e
| traffic
| J.

Calculation - N Tudging
of driving Integration }7{E\-‘HV mode Request 1

process
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planning Mods J /

| i - st Mode
| Predictive Information |—| Request Mode

Fig.4: Control architecture

2.4. Generation of predictive information in navigation
system
The navigation system generates predictive information that
could estimate the energy (Wh) and driving power (kW) along
the route ahead, to fulfil the below boundary conditions:
+ To use up all battery energy until arriving at the destination
+ To switch over to hybrid driving in high road load areas
The route to the destination is divided into several sections (See
Fig.5). It predicts driving power (based on road type, traffic
conditions, road load), time (based on distance, vehicle speed)

and distance for each section.

Following three additional processes are necessary to above basic

information, in order to generate accurate predictive information.

©!

Fig.5: Image of predictive information linked to route

(1) Calculation of driving power

Topography and traffic information from route is necessary to

predict driving power, if the route has not been traveled before.

In such a case, driving power is calculated using gradient

information available in the map and vehicle speed coming from

live traffic services (see the following equation).

- Driving power[kW]= (Gradient resistance + Driving resistance)
xEstimated Velocity + 3600

*Gradient resistance[N]=Vehicle weight x Estimated slope
x9.8+ 100

*Driving resistance[N]= RLa x Estimated Velocity 2 + RLb
xEstimated Velocity + RLc

-Estimated Velocity[km/h]=Velocity based on road category and
from live traffic services

- Estimated slope[%]=Gradient data from Geospatial Information
Authority (GSI)

However, the acceleration and deceleration losses cannot be

considered since the navigation provided vehicle speed and

gradient values are averaged over sections. So, the estimated road

load can be different from actual road. Therefore, road load

learning function has been implemented in order to improve the

accuracy on the roads already travelled.

(2) Road load learning function

In order to adapt to real driving conditions and driving style, the
system learns vehicle speed, road load and gradient in sections
along the route. Then driving load is calculated by hybrid ECU in
real-time. This real-time driving load is transmitted to the
navigation system and then linked to the map. The real-time
driving load calculation is according to the following formula:

- Driving load [N]

= Driving force (from engine and motor) x System efficiency
On roads that have been already travelled, this learning

information has priority to generate predictive information.
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(3) Integration Process

When the destination is at a distant location, the amount of data
to handle becomes too large. A typical case is long-distance
driving scene as this control supports trips that cannot run only
with battery energy.

Therefore, sections next to each other with small road load
differences will be combined so they can be easily handled by the
hybrid ECU.

Also considering the processing load and communication delay
on the hybrid ECU, information from the current vehicle position
until a certain distance away is extracted from navigation
system at a time and processed at fixed interval along with the
latest traffic information. (See Fig. 6)

Creating predictive information
for each mtersection

Updating information
regularly

> 4 i IJ i| =
Integration section

New route: Navi information

‘Travelled route: Learming information

Section 1 2 3 4 5 [ 7 2 ] 10 11
Length[m] 300 | 321 | 413 | 352 | 380 | 445 | 300 | 420 | 400 | s10 | 320
Power[kW] o 05| 45 | 26 [ S0 | z4 | 52 [ 125 | 10| 05 -02
Velocity[len'h] | 42 | 35 | 57 53 38 62 33 10 | 122 | 355 34
Foad type ol o ] 0 0 0 2 2 2 0 0

Fig.6: image of predictive information generation
When the destination is more than certain distance away, hybrid
ECU is notified that whole route information is not available. As
a result, HV mode is planned to maintain current battery energy
regardless of current SOC, until whole route information is
available.

2.5. Planning of mode control in hybrid ECU
The hybrid ECU receives the predictive information and makes a

mode control plan as follows:

(1) Target area selection of all battery energy consumed (near the

destination):

To ensure all battery energy is consumed until arriving at the

destination, some area before the destination is excluded from the
EV mode control planning since the accuracy of predictive

information is limited.

(2) Determine whether vehicle could reach the destination in EV

mode:

The control calculates whether the vehicle could reach its
destination in only EV driving mode based on current battery
energy.

(3) Order of priority for EV mode:

The control prioritizes the EV mode planning in certain areas

where electric driving is expected — even though it can be less

efficient.
EV priorityl * Out of the road Allocate EV mode
EV priority2 : Low load area
EV priority3 : Traffic jam area

EV priority4 © Narrow city street
EV priority5 : Without any other requirement
EV priority6 : Highway, Freeway

EV priority7 : Near the destination Allocate HV mode

Fig.7: Priority level of the EV mode

(4) EV/HV mode plan for each section:

The control allocates the EV driving mode in descending order
of EV priority. When the cumulative energy consumption of the
EV mode planned areas exceed current battery energy, control
allocates HV mode to remaining area. In case areas have same
priority level for EV mode, lower road load area is prioritize to
EV mode.

When the destination is more than certain distance away and
whole route information is not yet available, step (2) is skipped.
And EV priority 6 and 7 in the table 1 is planned as HV mode
because battery is supposed to be consumed until arriving at
destination.

(5) Final optimization:

In addition to above priorities, final driving mode is determined
by consideration of avoiding unnatural behavior due to
fluctuations from quick mode changes and to select EV mode for
avoiding overflow of battery - in case of downhill with high
SOC.

3. Real world evaluation in vehicle
The efficiency of the system was tested and verified in real world
on Japanese and European roads with various battery levels and

driving lengths.

3.1 Route

The evaluation route selected is as shown in Fig. 8. This route
represents various road load conditions such as downhill, uphill
and highway. In addition to above route, short-length(~30km),
medium-length(~100km) and long-length(~200km) routes has
been tested. Since this function will be introduced in Japan and
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Europe, real environment test has been performed in Belgium The reason for choosing this method was to avoid repeatability
and Germany - to consider European conditions also. Fig.9 issue in real world while testing with control ON & OFF.

shows the route of long length trip in Europe. Input information for the simulation:

W | o T
b >

[ * Velocity, road gradient, air conditioning and SOC at start

* The actual change between EV & HV mode during testing
il EWE D
plioliaia with control ON
H AT &
Bl AERES elocity[km/h]
i (ZF ._v‘.:;_(u ‘:‘:h? e i
(C)Y-‘hoo]av‘a‘:,“(c)zgll; T E®4 ; s i |
/JM ] g _
g 2 O o\ RL,Ymass, '
om o Skm 10km 15km : 20km height from 1G-On position(m] 41 " “‘ I 1
. velocity [km/h] - b n ; ‘.‘H i H‘\‘
g Fig.10: Simulation of fuel efficiency benefit based on the actual
distance[km] VEhIC|e data

Fig.8: Short Coursel@JPN
3.3 Results

: W Above procedure has been performed to all routes. Tablel shows
the summary of benefit in each route.

Highviay Tablel: Benefit of Predictive EV Drive in each route
[ : with Learning data
Lnicial sl Eiciencylim 1] COI@IPN CO2(=]GEURO
Course o | 2 | soc
Bl | | of on ) of on apd of on Af]
1 (216 [260] 1281 | 1907 023 17680 | 028
2 [2ue | 260 2008 | 203 075 17650 | 0.85
Shontl -
1 261 1844 18.68 0.8 19620 -171
4 (213 | 259 1737 7.75 -149 21479 -1.62
1 (260 [261] 1681 | 1726 164 2441 | 207
Shor2 | 2 |260 | 361 | 1718 | 1741 109 28161 | -l46
Altitude 5 | 265 | 262 1754 | 1788 131 751 | 08
8 1 ]260 | 261 1734 17.35 0.06 28128 0.06
E A Short3 2 (260 | 259 1671 16.7¢ 042 20120 049
2 3 |260 | 260 1754 | 1m0 267 7441 | 0se
L » 4 o 1 [s46 |26 1683 | 1707 073 67126 | 0.8
O T | aosster |2 |46 [ 260 1648 | 168 0.8 62062 | 0.9
. “'" X ~ 3 [s4s | 261 1675 16.01 089 67827 | 093
“'“ﬁ‘;“““"‘[ y 1353 | 280] 17m2 17.73 002 3830.6 | 005
gfiway 1 Mistt2 | 2 355|260 1503 | 150 230 4TLE | 035
g 3 |35 |26 1626 | 1637 058 | 43440 | 45127 | o
E 1 [2066) seo| 2073 | 208 052 | 191488 | 190267 | 0.4
Lonzl 1 (2066| 800 20.60 2088 -1.08 192504 | 190270 -1
3 (2066 800 19.67 20.01 -136 203102 | 199806 -1.62
- 1 |207.6| 66.0 2181 21.84 0.18 214032 | 21448.7 £.21 19062.6 | 190183 023
D Long2 | 2 [2076] 661 | 2055 | 2074 | 003 | 227055 | 226084 | 082 | 203325 | 201473 | 081
5 |2075]ese| 272 [ e | 125 [ z0smea | 203240 | G105 | iseces [1mma] o
Fig.9: Long Course 2 and Long Course 3 @Euro Average - 0.95 077 059
= Fuzl Eficisncyfenn 1] CO2[2)BIPN CO2[z}ZEure
Cours: 5 pistiem] SOC[
o 3 on A[%) 3 on AP of on A%)
1 622 | 517 1457 14.87 200 107720 | 105983 -1.61 89516 1.94
Middlal
) z na | 1406 | 17 [1ews | naze | s | eseas Lét
3.2 Method to evaluate benefit of the system I 1448 | 1462 | 083 | 183423 | 12138 | 086 | 158ale 081
= |z 1398 | 1413 | 101 | 200037 | 190360 | 078 | 165128 055
The fuel efficiency benefit is calculated by simulation of actual oo 1 ner [ 13es | oss [swar [smears | 047 | sassso [sasss | s
Long2 2 1381 1413 155 354582 | 34086.5 -133 310080 | 3 -1.45
vehicle data (see the Fig.10). The Predictive EV Drive function = 126 | L6 | LG | saed L IWIGS | 008 | 08 | STRE | 10D
1 1611 | 1609 | 008 | 307050 [ 307485 | 015 | 271061 017
H H H s Longs | 2 1570 | 1564 | 034 | 314933 | 315962 | 033 | 279324 037
was active to record vehicle data during driving the routes. The e - Al et e i ek :
3 220 | %07 1552 15.52 003 318800 | 31020.6 0.13 281026 0.21
d d d d H h H I H I f I Average 0.94 -0.74 -0.85
recorded data was used in the simulation to evaluate fue

efficiency with Predictive EV drive ON. To simulate fuel COzis including both CO expelled with gasoline and

necessary for power generation of plug-in electricity.

efficiency with this control OFF, only driving pattern from the . . L. - .
4 4 gp Note) CO: intensity of electricity generation(kg-CO2/kWh) is

above recorded data was used. . . L
estimated value by Toyota Motor Corp. for consideration in IEA
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WEQ2021, Data Statistics and so on. (This is calculated life

cycle factor including upstream emission)

3.4 Observations

(1) Predictive information accuracy

Following case is an example that shows difference in control
planning beween first and second trip due to improvement in
predictive information accuracy.

Fig.11 shows EV/HV control behavior and trip result using
navigation information on short coursel. Battery depletion was
high in 1% half of the trip and then battery was fully depleted on
the highway, before city driving. EV mode was selected for a
long time in this 1% half of trip because road load from navigation

was assumed less than actual load road.

Short Coursel #Tripl
100 WBattery depleted
Viode status
g s
[ .
o] Veloci
“ 50 F ty
g 20 e
s SOC 1
0| EV'mode 7] Hb'md! |
0 3 10 13 20
Distance[lkm]

Engine Status

On

Off

Z 100

% 50

T;D 0

S = Distance[km]

Fuel Efficiency A[%] CO2 A[%] @IPN CO2 A[%] @Euro

0.30 -0.23 -0.28
Fig.11: Result of the Short Coursel tripl

Fig.12 shows better control on same route after road load
learning. The prediction becomes more accurate on previously
travelled roads, thanks to the accumulated route data from the
learning system.

If prediction information error is high, it can result in a different
battery depletion than original mode plan.

Even without learning data, hybrid-ECU re-calculates the mode

plan every 1 minute to minimize the impact of prediction error.

In fact, it is possible that recalculation might not be enough to

compensate prediction error.

Short Coursel #Trip4

100

_ Velocity ttery
§ 80 epleted
2 60 Mode statys
E 40
E 20 T
g SOC
0 | 'HVmo
0 3

Distance[lm]

Engine Status

oo UM T T
Off

n z 0 1z 10

Driving Power[kKW]

0 3 0 5 20

Driving Fower[ki]
wn
= 3

Distance[km]
Fuel Efficiency A[%] CO2 A[%] @JPN CO2 A[%] @Euro
2.20 -1.49 -1.62

Fig.12: Result of the Short Coursel trip4

The accuracy of predictive information is analyzed to show the
difference between the first trip and repeated trips with learning.
Fig.13 shows accumulation of difference between predictive
energy consumed and actual energy consumed to compare before
and after learning.
In the first trip, actual energy tends to be larger than predictive
energy from navigation map. In this case, it shows 89Wh/km
difference. On the contrary, repeated trips show only up to
22Wh/km difference - thanks to the learning system. Graph on
right hand side in Fig.13 shows the variation of actual vehicle
energy consumption during each trip. Generally, real testing
environment has variation due to traffic, environment, etc. These
tests have up to 17Wh/km variation. Therefore, we can conclude
benefit of learning system from these results.
ShortCoursel

difference betweenPredictive energy
and Actual energy

Short Coursel
Actual energy of each trip

. 4500 5

2 | TriplRed 89Wlvkm = 4000 =

Gaw | Trip2Black E3500 =3836Wh
Trip3:Blue & 3000

1500 Trip4:Green 2 2500
£ 2000
5 1500
22Wh'km E 1000
A TWhEm & 500
== 16Whkm o
2 2 0 E 10 15 20 25
Distance[km]

Al7TWh/km

0 5 10 15
Distance k]

Fig.13: Short Coursel accuracy of Predictive info.
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Table2 shows error due to predictive information accuracy with after whole route information is available. This issue is due to
other routes. It is evident that improvement from learning system ECU capability limitation, which will be improved in future.
is observed in other routes as well. EURO Long Course3 #Trip2 v
Table2: Predictive information error 140 o
20 Velocity
g 100
[¥]
Country PN Euro 8 80
Course  |Shortl |Shor2 |Short3 |Middlel [Longl [Long? |Middle |Longl |Long2 |Long3 =
nl_map 89 77 4 75 328 1l 23 202 747 387 % @
n2 16 5.1 -12.1 5.9 3.7 14.9] -5.6 1.7 -11.6] -1.4 % 40
n3 17 5.6) 25 -6.4 17.7 -9 14.0 12.0 - N
20
0
Table3 shows average of fuel efficiency and CO> results for all 1) Distance[lan]
routes before and after learning. Driving Power[kW]
__ 150
Table3: Result of the before and after learning Z 100
Fuel Efficiency A[%] | CO2 A[%] @JPN CO2 A[%] @Euro g
nl 0.68 -0.55 -0.66 g °
112,113 1.07 -0.84 -0.95 2 o 0 50 100 150 200

Distance[km]

Fuel Efficiency A[%] CO2 A[%] @IPN CO2 A[%] @Euro
-0.34 0.33 0.37

(2) Long trip data result

Fig.14 shows long course 2 and 3 in the Europe. Route

information is shown in Fig9. Fig.15: Result of the Long Course 3

EURO Long Course2 #Trip2
140 4. Application for geo-fencing
Velocity ) oo A )
120 4.1. Expanding on predictive EV Drive function
g““m s In Europe, geo-fencing is coming under the spotlight for
T ® encouraging PHEV customers to drive more electric in city areas.
= 60 . . .
= Some other competitors have already implemented geo-fencing
2 40
- . system for their PHEV in specific areas to encourage drivers to
o Y T T P T e N switch over into EV driving mode. (See Fig.16)
0 50 100 150 200
Distance[km]
: priving poverl] i T T D T e el A
502 HV mode EV mode
* B Fig.16: Geo-fencing image (PHEV)
g " o o . The Predictive EV Drive is originally designed to drive in EV
s mode by considering the total route, but it can also support geo-
Fuel Efficiency A[%] | CO2 A[%)] @IPN CO2 A[%] @Euro fencing requirement by adding information about specific geo-
1.55 -1.33 -1.45 fencing areas and promote driving as EV. (See Fig.17)

Fig.14: Result of the Long Course 2

When destination is more than certain distance away, predictive

information for whole route is not available at the beginning of

the trip. HV mode is typically planned until whole route PED & Geo- [[INEVANN AV [NEVIN HY eV
f

information is available. Fig 14 shows good result because Perl:?::tg:ve rzoz_uﬂﬁ-vfu_-‘—b_ﬁv.
Driving power

highway driving is in 1% half of the trip which is planned as HV. _ —

On the contrary, Fig.15 shows not ideal scenario because city

driving is in 1% half of the trip which is planned as Fig.17: Image of application of Predictive EV Drive for geo-

HV(Fig.15(a)). Therefore, EV is selected during highway driving fencing
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Fig.18 shows control architecture of Predictive EV Drive for geo-
fencing. Geo-fencing functions are implemented over the
Predictive EV Drive.

Navigation system Hybrid ECU

Predictive EV Drive

Caleulation
of current
Ld.ln'm; Power

EVHV mode
J: plannmg
TJudging -

Geo-fenemg Request [fisi

planning Mode N\

i wer . )
- Geofencing info added I-|Predicﬁveh1formal:ion }_'RequcstMode

Fig.18: Control architecture of Predictive EV Drive for geo-

fencing

To ensure that the benefits from Predictive EV Drive are kept
even with geo-fencing feature, a new control considering geo-
fencing is added dedicated to EV/HV mode planning.
Geo-fencing feature is implemented in addition to the original
vehicle mode control that manages switching between EV and
HV mode.

Geo-fencing area information which prioritizes EV mode is
implemented in the navigation. This information is sent to hybrid
ECU to be combined with other section information.
Geo-fencing planning in hybrid ECU is the new function to
realize EV mode in the geo-fencing area.

EV/HV mode planning control calculates energy demand to
achieve EV mode in whole geo-fencing area. When battery
energy is not enough, HV mode is requested to reserve battery
energy before entering geo-fencing area. Conventional predictive
EV/HV switching mode control is also working in parallel to
achieve both - fuel efficiency benefit and geo-fencing function.

Fig.19 is the case that combines both functions.

Predictive EV drive :
Sl planning by road load information

Geo-fencing :
planning by SOC and LEZ energy

Efficiency is better, but
LEZ is not considered.

Easy for SOC management ‘
but no fuel efficiency

improvement

Velocityfkm/h]

10

soc[%]

EV request
Predictive EV Timelsec]  (Geo-fepcine KV area
1101

Time{sec)

Fig.19: Image of vehicle mode control including geofencing

4.2. Method to evaluate benefit of geo-fencing function

There are 2 main concerns when practically implementing geo-
fencing function.

First concern is how to estimate the battery energy consumption
to drive as EV since predictive information is not perfectly
matching with actual driving condition.

Second concern is to ensure that battery energy is consumed as
much as possible at destination - to achieve good COz2 results.
Therefore, calibration of battery energy margin before destination
has been optimized to address these two concerns. Fig. 20 shows
two example of geo-fencing driving scenarios.

If SOC depletes less than predicted, battery energy is able to be
consumed after geo-fencing area to optimize better CO2. If SOC
depletes more than predicted, battery energy is used for geo-
fencing function is stead of later EV. Therefore Case (b) which
has geo-fencing area at the end of trip is more severe than other
Case (a).

(a) Geo-fencing area at the middle of the trip
=Battery energy can be consumed until destination

= ®

HV EV mode

(b) Geo-fencing area at the end of the trip
=Battery energy might be remained
= Not good for CO,

s =
HV EV mode

Fig.20: Geo-fencing driving case

Therefore, geo-fencing at the end of trip is set for each course in

Japan and evaluated.

4.3. Results of Predictive EV Drive for geo-fencing

Since geo-fencing regulation is not fixed yet, this evaluation
allows engine starting in the geo-fencing area if battery energy is
depleted before destination. EV driving distance ratio, EV
driving time ratio, fuel efficiency and CO2 benefit is evaluated
with these routes.

Table4 shows the results of geo-fencing function from real world

evaluation with the actual vehicle.

Copyright © 2023 Society of Automotive Engineers of Japan, Inc.
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Table4: Benefit of the control in each route

[ : Battery depleted before reaching the destination in geo-fencing area

— sy s Foet ey ) COEI@TN CONEI@Euo
area | Course |no| ™' | oc ]
[kem] - Off On Al%] Off On Al%] Off On Al%]
[km] [%e]
1216 (259 | 2131 | 2186 | 260 1946.7 19416 026 16215 16495 135
Shertl | 2 | 216 | 26 [ 2026 | 2083 | 291 23605 | 23234 -137 1800.4 1843.0 23
3216 26 2095 | 2140 | 216 2748 22498 -1.10 1699.5 17523 in
11266 26 | 2039 | 2063 120 | 29187 | 28877 -1.06 23730 23440 -131
20 Short2 | 2 | 266 26 1856 | 18.84 1.50 32087 31742 -1 2646.7 2660.0 0.50
3| 266 26 1916 | 1943 140 31076 3081.1 085 25368 23838 1.85
1263|239 | 2029 | 2043 | 067 28966 | 28933 0.10 23171 2396.0 341
Short3 | 2 | 263 | 261 | 1925 1947 111 3058.1 30423 052 24684 2336.5 276
3263 26 19.63 | 1977 | 0.70 30011 30016 0.02 24428 2369.6 ile
1545 | 261 | 2126 | 2156 141 38246 57540 -121 51274 51821 087
Middlel | 2 | 346 | 261 | 22.63 | 23.01 1.69 34714 | 339638 -136 43833 48630 038
3| 546 | 260 | 2357 | 2406 | 209 52387 51554 -1.61 46356 46404 0.10
1340 | 261 | 2155 | 2202 | 220 35337 3468.8 -189 20698 28942 254
Middle2 | 2 | 340 | 261 [ 21.64 | 2201 17 35238 34824 -123 20441 20846 138
10
: 3340 | 260 | 2110 | 2137 129 36155 359011 0.67 30358 31262 298
Lonel 1] 214 | 800 | 2140 | 2138 | 0.82 [ 223199 (221654 | -0.69 | 192054 | 191333 | -0.33
ong|
- 2 |213.6] 800 | 1817 1835 095 | 264060 | 261868 083 233087 | 231599 | -0.64
Long2 1]|2073| 660 | 2237 | 2233 | Q.70 | 208609 | 207311 | -0.62 183932 | 183010 | -0.31
ong2
- 2 2071] 661 | 2214 | 2234 092 | 210520 | 20885.1 079 185874 | 184242 088
Average 1.48 -0.92 0.92

(1)EV driving ratio

There are two cases in which battery depleted before reaching the
destination in geo-fencing area, but table5 shows EV time ratio is
more than 95% in geo-fencing area. After learning, EV driving
performance improved for all cases, as expected.

Table5: Result of the EV rate

Corse | no | EV_rate[%)]_distance EV_rate[%]_time
Middlel | 1 95.00 97.03
Middle2 | 1 96.53 98.20

(2) CO2 result

CO2 benefit becomes worse as expected from -0.89g in tablel to
0.92g in table4 with Euro CO: calculation, because battery
energy is remaining at the destination to achieve full EV driving
in geo-fencing area.

Since Europe and Japan has different geography, CO2 generating
electricity in Europe is smaller than Japan. Therefore, remained
energy in the battery at the destination has bigger impact in
Europe because battery energy remained means more engine
starting. Therefore, it is important that battery energy
optimization takes the energy situation in each country into

account.

5. Conclusion

The development of Toyota’s Predictive EV Drive and validation
of its benefit in real world usage is explained.

It can be confirmed that this control improves fuel efficiency by
up to 0.98% and can reduced CO2 emissions by up to 0.77% in
Japan. This effect is similar than Euro data.

We will proceed with our developments to further refine fuel
efficiency and expand the application and commercialization of

geo-fencing function.
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