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ABSTRACT: Validated degradation models are needed to ensure optimized operation of battery systems. This paper presents a

simplified electric vehicle battery degradation model, which estimates the degradation based on vehicle usage daily values. The model

quantifies calendar and cycle degradation based on battery temperature, State-of-Charge and odometer. The model results are compared

against two datasets of 2.5 years obtained with a LEAF e-plus: on-board State-of-Health readings retrieved from the battery management

system and capacity estimations assessed while monitoring battery full recharges. The results show that, after 2.5 years, the model is well-

aligned with the capacity estimations, while the on-board readings estimate the State-of-Health 1.3% lower. The obtained State-of-Health

from the model after 2.5 years is equal to 95.6%, with calendar degradation being the major driver for the degradation cumulated so far.

KEY WORDS: Battery pack; Calendar ageing; Cycle Ageing; Degradation models; Electric vehicles; State-of-Health; Testing.

LIS OF VARIABLES AND PARAMETERS

Variables
t Time (s)
SoC State-of-Charge (%)
SoHeaq State-of-Health by the on-board readings (%)
SOHmodel State-of-Health by the model (%)
SOHest State-of-Health by the capacity estimation (%)
Odo Odometer (km)
Th Battery temperature (°C)
Vp Battery voltage (V)
Iy Battery current (A)
Po Battery power (W)
Ep Battery energy (Wh)
Ven DC charger voltage (V)
len DC charger current (1)
(= DC charger energy (Wh)
Vaux Electric vehicle auxiliary voltage (V)
laux Electric vehicle auxiliary current (1)
Eaux Electric vehicle auxiliary energy (Wh)
Enet Net energy charged in a lab session (Wh)
Qeal Cumulated calendar degradation (%)
Qeyel Cumulated cycle degradation (%)
Q Battery Ah capacity (Ah)
f Pre-exponential factor for calendar degradation
n Driving specific energy consumption (Wh/km)
Atgriving Driving time in a specific period (s)

Parameters
Qrom Battery nominal Ah capacity equal to 176.4 Ah
Vrom Battery nominal voltage equal to 350.4 VV
Enom Battery nominal energy equal to 61.8 kWh
E, Activation energy equal to 24.5 kJ/mol
R Gas constant equal to 8.314 J/(mol-K)
a Empirical coeff. equal to 8.6*10° 1/(Ah-K?)
b Empirical coeff. equal to 5.1*107 1/(Ah-K)
c Empirical coeff. equal to 0.76 1/(Ah)
d Empirical coeff. equal to 6.7%107 1/(K-s)
e Empirical coeff. equal to 2.34 s

1. INTRODUCTION

1.1 Background

Electric vehicle (EV) is becoming a dominant technology in the
transportation sector. Its optimal usage and integration in the
electric grid have been widely assessed in a large variety of studies
[1]. Battery degradation, however, remains a major concern for
electric vehicle users: proper understanding and quantification of
its main drivers can enable optimized operation and charging
process [2]. Moreover, it can also facilitate the usage of the battery
for services not strictly related to driving, such as vehicle-to-grid
(V2G) [3], [4]. In power system applications, it is common to use
simplified battery pack models to reduce simulation time and

model complexity. This is also because cells within a battery pack
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may not always experience identical conditions [5]. As a result,
degradation at the pack level may not necessarily correspond
directly to the degradation of individual cells [6]. Traditionally,
battery degradation is divided into cycle and calendar, with the
first one driven by temperature, discharge rate and cycles, while
the latter being dominated by time, temperature and SoC [7].
Despite the literature providing different models of single battery

cells, validated battery pack models are scarce.

1.2 Objectives and contributions
The objective of the paper is to present a simplified EV battery
degradation model that can capture the overall trend without
requiring extensive datasets. The model is validated against:
e on-board State-of-Health readings retrieved from the battery
management system, using the method presented in [8];
e  capacity estimation obtained while monitoring battery full
recharges, using the methodology presented in [9].
The overall workflow to validate the model is presented in Fig.
1, along with data and measurements utilized in each step. The
figure also serves as a guide for the rest of the paper. Section 2.1
discusses the data acquired through the OBD-II reader and an
application named Leaf Spy. Data acquired via a Hioki datalogger
of the DC charger used to perform the capacity estimations is
discussed in Section 2.2. The degradation model is presented in
Section 3, while the capacity estimation method is summarized in
Section 4. In Section 5, the comparison between State-of-Health
output of the model, the one derived by the capacity estimations
and the one retrieved by the Leaf Spy is reported.

an OBD-II reader. Although all driving sessions have been
recorded from the vehicle, to limit the dataset and make the
method easier to apply only two instances from each day are used:
one in the morning before the car is being driven and one in the
evening before the car is being parked for the night. For the
modelling part, the following quantities are mainly relevant: time,
SoC,
measurement, the following two quantities are considered

odometer, battery temperature. For the capacity
additionally: battery voltage and current.

As previously presented in [8], a series of key quantities is
acquired from the battery management system (BMS), including
SoH readings. Table 1 reports battery usage indicators like mean

SoC and Tp along with the distance driven for the 90-day periods.

Table 1. Battery pack key usage indicators

through the Leaf Spy

EV on-board data acquisition
(Section 2.1)

Degradation model
(Section 3)

SoH,

read

SoH,

‘model

t DC charger data acquisition
through the Hioki
T, (Section 2.2)
SoC Ve | Vau
Vo Ion | Toux
Ib . Lo
Capacity estimation
____________ »
(Section 4)
SoH,

est

Periods SOHread | SOHweas | Mean | Mean T, Driven
reset SoC (°C) distance (km)

27/10/20 | 100.00% - 49% 8.6 2631
25/01/21 | 99.46%

25/01/21 | 99.46% | -0.00% | 60% 6.8 3036
25/04/21 | 99.25%

25/04/21 | 99.32% | +0.07% | 58% 19.5 4647
23/07/21 | 98.77%

24/07/21 | 99.39% | +0.62% | 66% 18.8 3968
21/10/21 | 99.04%

23/10/21 | 97.35% | -1.69% | 61% 8.2 3356
19/01/22 | 97.25%

23/01/22 | 95.50% | -1.75% | 62% 74 3227
21/04/22 | 95.41%

22/04/22 | 95.40% | -0.01% | 63% 19.4 5079
19/07/22 | 95.07%

20/07/22 | 93.93% | -1.14% | 58% 19.8 4796
17/10/22 | 93.59%

17/10/22 | 94.22% | +0.63% | 61% 8.5 3077
14/01/23 | 94.14%

16/01/23 | 94.34% | +0.20% | 55% 51 1605
18/03/23 | 94.32%

(ongoing)

Degradation comparison between Leaf Spy reading model output and capacity estimation
(Section 5)

Fig. 1. Model validation workflow and paper structure.

2. DATA ACQUISITION
2.1. EV on-board data
The Leaf Spy application allows for the acquisition of second-

based measurements of a large set of quantities, retrieved through

The 90-day window is chosen to highlight the recurring SoHread
resets performed by the vehicle BMS. Over the 2.5-year period of
usage of the EV, the average battery temperature stands at 12.6 °C
against an average ambient temperature of 9.0 °C. Charging
processes avoid high SoC for long periods and are mostly based
on slow charging. A time weighted average SoC equal to 61% is

observed along with a total driven distance of 35538 km.
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The daily breakdown of the driven distance is reported in Fig. 2.
The average distance per day is equal to 42 km and for 135 days
out of the 838 days analyzed the car was not driven. For 821 days
out of 838, the car drove less than 200 km/day, which means that
fast charging sessions did mostly happen in the remaining 17 days,
when the daily driven distance was more than 200 km.
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Fig. 2. Daily distance driven between 01/12/2020 (the day that
the car was registered in Denmark) and 18/03/2023.

2.2. DC charger data
Every 3-4 months, the car is driven to the laboratory to perform
capacity estimations: the EV is completely discharged until the

minimum voltage allowed by the BMS is reached (see Fig. 3).

Fig. 3. The LEAF e-plus under test in the laboratory at DTU.

Afterwards, a monitored recharge takes place: the DC power
used to charge the vehicle is measured at the charger terminal. The
power needed to supply the auxiliary systems of the EV is
separately measured and is subtracted from the total to assess
solely the energy used to recharge the main battery. Second-based
values from the DC charger and from the 12 V bus of the EV are
measured with dedicated DC voltage and current clamps and

acquired through a Hioki datalogger.

3. DEGRADATION MODEL
3.1. Model structure
The degradation model, realized in Matlab-Simulink, accounts
separately calendar and cycle degradation and is derived from the

formulation presented in [10].

t T, SoC Calendar qcal
EV on-board degradation Battery
data capacity
acquisiion ! Tb Odo Cycle Geycl inAh
degradation

Fig. 4. Synthetic overview of the degradation model.

Calendar degradation is calculated by using battery temperature
and SoC: two values per day are used and are linearly interpolated
over time. Since only average values are considered, charge and
discharge processes taking place throughout the day are not
captured. This assumption is made to limit the simulation time of
the model without compromising the validity of the results,
considering that calendar degradation dynamics evolve over long
time horizons.

Cycle degradation is, instead, based on the daily distance driven,
in km, which is then used to assess the corresponding energy
consumed, in kWh. The model further considers the temperature
of the battery pack. The effect of repeated fast charging on both
temperature and energy intensity is not fully captured. However,
when active cooling is not present, as in the case of the LEAF, the
battery temperature will remain high also few hours after the last
fast charge [8]. Whereas during low-power charging sessions, the
model will not lose accuracy since the temperature is marginally
affected. Degradation values, gca and gcycl, are used to compute the
actual battery capacity, Q, in Ah, and the normalized quantity,

SoHmodel:
Q = Qnom - (100% — Gear — Geyer) €]
SoHmoder = 100% — Gear — eyer )
3.2. Calendar degradation
Calendar degradation is based on Arrhenius formulation, to

consider temperature dependency. The resulting cumulated

degradation, expressed in percentage, is computed as follows:
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1 ZEq
Gcal = Ef (f - expRTy - ﬁ)

_ @)
— (f . epr'?Ily -Vt — At) dt,

where At is equal to 1 second, while t is measured in days. The
battery temperature, T, is reported as absolute temperature. The
pre-exponential factor, f, is based on the piecewise formulation
reported in Table 2 and is derived from experimental estimations
for NMC cells, presented in [11]. Several trends can be observed:
a rising value for SoC until 30%, followed by a rather constant
area until 60%, where the increase of the pre-exponential factor,
and therefore calendar degradation, is limited. Between 60% and
70%, there is a steep increase, which is again followed by another
rather constant area between 70% and 90%.

Table 2. Pre-exponential factor as a function of SoC

SoC 0% 10% 20% 30% 40%

f 1500 2000 2500 3000 3100
50% 60% 70% 80% 90% 100%
3100 3600 6100 6100 6500 7400

This means that keeping a low SoC helps the battery to preserve
its capacity. The effects of SoC and battery temperature are

graphically presented in Fig. 5 over a period of 10 years.
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Fig. 5. SoH based on pure calendar degradation under various
SoC and at two constant temperatures (25 °C and 10 °C).

Additional degradation caused by cycles is not considered in
this case. Besides the influence of SoC levels, it is clear how high
temperature negatively affects lifetime. If one looks at the purple
curves in the two plots (SoC = 65%), it can be seen how the SoH
at the 10-year mark goes from 91% at 10 °C down to 86% at 25 °C

and would get further down to 76% if the battery was constantly
kept at 40 °C.

3.2. Cycle degradation
Cycle degradation is based on the following formulation, where

cumulated degradation expressed in percentage is reported:

qcyd:f(a-Tb2+b'Tb+c)
4)

. Iy
. exp(d Tp+e) Qdt

With battery temperature, T, reported in absolute values; actual
battery capacity, Q, reported in Ampere-second and by
considering only discharging currents for Ip. Coefficients reported
in equation (2) are based on the measurements described in [12].

Since this paper intends to further simplify the formulation for
cycle degradation by only using daily driving measurements, the
battery current, Iv, used in (4) is derived from odometer readings.
By knowing the driven distance during a specific day and the
related driving specific energy consumption, it is possible to
compute the energy used during the driving session. Knowing the
driving time during the period and given the battery pack nominal
voltage, Vnom, the current can be obtained as indicated in (4):

Odo -1 1

®)

b =
Atdriving Vnom

The effects of driven distance and battery temperature are
graphically presented in Fig. 6 over a period of 10 years. An
average driving specific energy consumption, n, of 180 Wh/km is
considered. Additional degradation caused by calendar is not
accounted for in this case. It is clear how cycle degradation plays
a minor role in the overall degradation. Under ideal temperature,
which for cycle degradation is 25 °C, the cumulated wear
predicted by the model is expected to be less than 1% after 10 years,
even when considering a very intense driving usage of 50000
km/year, which roughly corresponds to 150 full cycles for the
61.8-kWh battery investigated.

Colder and higher temperatures negatively affect cycle
degradation: with a battery temperature of 10 °C, cycle
degradation gets five times larger. As discussed in [13], cycle
degradation has a quadratic dependency on temperature with a
minimum around 25 °C: degradation at 10 °C is as high as at 40 °C,
therefore, the lower plot of Fig. 6 gives a good indication of what

the cycle degradation could be with a temperature of 40 °C.
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SoH based on pure cycle degradation at 25 °C

=)
S

98 -

10000 km/year
20000 km/year
30000 km/year
96 - 40000 km/year
50000 km/year
95 ! I . . . \ . | |
0 1 2 3 4 5 6 7 8 9 10
Years

97

State-of-Health (%)

SoH based on pure cycle degradation at 10 °C
T T T T T T

o
IS}

99 -

98 -

10000 km/year
20000 km/year
30000 km/year
96 40000 km/year
50000 km/year

N .

97

State-of-Health (%)

95

N . . . . . .
0 1 2 3 4 5 6 7 8 9 10
Years

Fig. 6. SoH based on pure cycle degradation with various yearly
driving and at two constant temperatures (25 °C and 10 °C).

It is worth noting how, on average, cars in Europe are driven
between 9000 and 15000 km/year, depending on the country. This
means that even under intense driving conditions, the battery could
still be used for other purposes such as VV2G applications, without
considerable downside from a degradation perspective.

4. CAPACITY ESTIMATION

4.1. Capacity estimation method

As mentioned in Section 2.2, the EV is subject to regular full-
charging sessions to estimate the available charging capacity.
During the charging session, the following quantities are
calculated based on the measurements acquired by the datalogger:
charged DC energy, and energy consumed in the auxiliary.

The energy provided by the DC charger, Ech, is computed by
integrating over time the measured Vcn and lch, provided by the
Hioki datalogger. The energy consumed by the EV auxiliary, Eaux,
is computed by integrating over time the respective voltage and
current measured at the 12 V bus, acquired by the Leaf Spy. The
net energy charged is therefore defined as the difference between
Ech and Eaux. The resulting value is finally normalized by the
battery nominal capacity, Enom, to obtain SoHes.

Throughout the charging sessions, also the following quantities
are recorded to ensure consistency and replicability; however, they
are not used to modify the final SoHes: battery temperature,
voltage and SoC. Specifically, battery temperature, although it
cannot be actively controlled, is observed to ensure consistency
among the different sessions. To warm up the battery in winter
months, the measurements were planned during non-particularly
cold days and the EV was driven for 2 hours on the highway. This

was also needed to discharge the battery to approximately 10-15%

SoC, before having the final discharge by using the onboard
heating for the following 3-4 hours inside the laboratory. In this
way the battery had enough time to reach at least 14 °C. By the
end of the charging session, which normally lasts 8 hours, the
battery reached 24 °C. Finally, to keep at a minimum the influence
of charging losses inside the battery, a 23-A DC charger is used,
which, compared to the battery nominal capacity of 176.4 Ah,
implies a C-rate of 0.13. Details on the capacity measurement
technique applied on different car types are available in [9].

4.2. Capacity estimation results

Table 3 summarizes the most relevant quantities acquired
during the capacity estimation sessions. The battery voltage, Vb, at
the beginning of the charging session could not always be kept at
the same value, because in the last few percentage points of SoC,
the cells, which are normally balanced in the range of 10-20 mV,
tend to become unbalanced (see Fig. 7).

As discussed in [8], the battery pack consists of triplets of cells,
each of 58.8 Ah, wired in a series of 96, for a total of 288 cells. As
soon as the first triplet reaches 2.85 V, the BMS prevents further
discharge. However, as indicated in Table 3, normally the voltage
ends up between 286 and 302 V. The final voltage at the end of
the session is more predictable as the cells will be charged until
reaching a value between 4.18 V and 4.20 V, therefore the overall
battery voltage will be between 402 V and 403 V. The
corresponding minimum SoC ranges between 0% and 2%, while
the maximum between 96% and 98%. Finally, the fact that not the
whole 100% SoC is made available for the charging session is not
considered for the sake of determining SoHest.

v0.53.184 en
55:55:07:04:0A:EF
06/08/2022

Connected 52
TAP to Freeze

v0.45.166 en
55:55:07:04:0A:EF
01/09/2021

Fig. 7. The 96 cell triplet voltages displayed at the end of a

discharging session (a) and at the end of a charging session (b).
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Table 3. Summary results of the capacity estimations.

Date 18/12/20 23/07/21 20/08/21 17/09/21 22/10/21 22/02/22 31/03/22 06/08/22 27/10/22 | 02/02/23
SoC start 1.74% 1.57% 2.41% 1.76% 0.50% 0.00% 0.00% 0.51% 1.13% 0.60%
SoC end 96.54% 96.20% 96.55% 96.87% 96.22% 96.21% 96.15% 98.12% 97.93% 96.94%
V, start (V) 302.7 299.2 287.7 288.5 291.7 291.4 290.4 286.4 288.4 288.5
Vpend (V) 402.7 402.5 403.0 402.8 402.9 402.9 402.9 403.2 403.2 403.2
Ty start (°C) 19.0 29.1 249 26.4 18.0 17.5 15.3 25.3 19.2 14.3
Tp end (°C) 26.6 32.7 29.9 311 25.6 24.8 24.1 30.7 26.3 22.8
Charge duration 08:07 08:00 07:54 07:52 07:50 08:02 08:02 08:00 07:44 07:54
Een (Wh) 62224 60944 61401 60792 60662 60531 60993 60432 60387 60338
Eaux (Wh) 1084 985 1000 1069 1032 1042 1113 1054 1021 1000
Enet (Wh) 61140 59959 60401 59723 59630 59489 59880 59378 59366 59338
SOHest 98.92% 97.01% 97.72% 96.62% 96.47% 96.24% 96.88% 96.07% 96.05% 96.00%
A graphical overview of the battery key quantities like, current,
0
voltage, power and SoC measured during the charging session N
taking place on 02/02/2023 are reported in Fig. 8 and Fig. 9. g ;t
£7
5 £ 8
<o 1 = :190 ‘ ‘ ‘ . . . s J
g 5 i 0 1 2 3 4 5 6 7 8
g 10 Time (h)
5 10or
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225 L L L | | L 1 = 70
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Fig. 8. Measured battery current and voltage.

The charging current is kept at 23 A until the SoC reaches 92%,
at that point the topping phase begins, and the voltage slowly
increases from 400 V to 402 V, while the current decreases until it
reaches 2 A, with a SoC around 96%. Here, the final tail of the
charging curve is performed by using the on-board AC charger.
Less than 400 Wh are charged in the last phase (highlighted in red
in the first plot of Fig. 8). The charging power starts at 6.7 kW at
the very beginning, and it peaks at 9.2 kW before the charging
session changes from constant current to constant voltage mode.
The SoC increases linearly as long as the current is constant, while
the increase gets progressively slower during the constant voltage
mode. Further details on the charging modes of the LEAF are
provided in [14].

Finally, Fig. 10 displays air and battery temperature from three
different sensors inside the pack. When the EV entered the lab at
9:20, the battery temperature was at 7 °C and it slowly increased
until 14 °C during the following 3 hours, when completing the
discharging phase. The ambient temperature in the laboratory was
kept constant at 21 °C. Interestingly, when the charging session
started at 12:20, the battery temperature dips slightly in the first
hour, before Joule losses take over and, together with the
contribution from surrounding environment, contribute to the

heating of the battery pack.

Air temperature

Battery temperature T1

Battery temperature T2

Battery temperature T4
T T

T T T

1 2 3 4 5 6 7 8
Time (h)

Fig. 10. Measured air and battery temperatures.
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5. DEGRADATION COMPARISON

The degradation estimated by the model is here discussed and
compared with the one obtained by capacity estimations and on-
board readings. The upper plots in Fig. 11 report the daily values
acquired through the OBD-II for battery temperature, SoC and
odometer, which are used to feed the degradation model. The
lower plot shows the comparison between the model output in red,
the on-board readings in blue and the measured capacity in green
circles. The capacity values have an uncertainty of £1% due to the
measurement equipment.

The results show that, after 2.5 years, the model is well-aligned
with the capacity estimations, while the on-board readings
estimate the State-of-Health 1.3% lower. However, it is unclear to
the authors how reliable the measurements from the OBD-I1 reader
are, since they are provided by a third-party application. Another
possible source of deviation can be caused by the estimation

algorithm itself, which could be more conservative by
overestimating the degradation.

It is worth reminding that, although the LEAF e-plus nominal
capacity is 61.8 kWh, the car has a declared net capacity of 56
kWh. This implies that if 100% SoH is assigned to 61.8 kWh, once
SoH reaches 90.6%, the battery capacity will be equal to 56 kWh.
One could argue whether 56 kWh should be taken as the starting
point and therefore be assigned a SoH equal to 100%. If this is the
case, however, it would create a problem in using the capacity
estimation as a comparison, since it would lead to a SoH larger
than 100%: the last capacity value obtained at the end of the
investigated period is 96.0%, which is equal to 59.3 kWh.

Finally, it is interesting to highlight how the on-board
degradation algorithm has recurring major updates every 90 days,
as already pointed out in [8].

4
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Fig. 11. Historical values used to feed the degradation model: Ty (top left), SoC (top center), Odo (top right). Air temperature is reported

in the first plot just for comparison with the battery temperature, though it is not used in the model. State-of-Health comparison between

model, on-board readings, and capacity estimations (lower plot).

6. CONCLUSION AND FUTURE WORK
The paper discussed and validated a simplified EV battery
degradation model based on sparsely populated datasets. The
model relies on two daily measurements of battery temperature,

SoC and odometer. The model has been described in analytical
terms and compared against two datasets of 2.5 years: on-board
SoH readings retrieved from the battery management system, and
capacity estimation obtained while monitoring battery full charges.
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The results show that, after 2.5 years, the model is well-aligned
with the capacity estimations, while the on-board readings
estimate the State-of-Health 1.3% lower.

Furthermore, a sensitivity to the amount of km driven per year
has been presented to strengthen the argument that for EVs, the
main driver for degradation is calendar, while cycle plays a minor
role. This conclusion should help to build confidence in the
possibility of extending the usage of the EV not just for driving
purposes but also for V2G applications, like the ones described in
[15] and [16]. Moreover, the presented calendar degradation
characteristics, highlighted how degradation progresses per SoC
areas. This specific behaviour can be for instance used in assessing
the optimal trade-off between a smart charging strategy that take
advantage of local renewable energy and the corresponding
additional wear caused by prolonged high SoC levels.

Finally, we wish to conclude the paper by stressing how both
calendar and cycle degradation characteristics have been based on
cells with similar NMC chemistry, but different size and shape. As
demonstrated by the experimental results, this does not limit the
validity in the approach. Future activities will extend the validation
of the model over longer periods, as well as quantify the additional
degradation caused by V2G services.
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