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ABSTRACT: Roadside perception requires continuous tracking of vehicles in a fixed perception area. Traffic at city intersections is
dense and easy to jam. Traffic lights and traffic jams also significantly lengthen occlusion times, making it harder for roadside sensors to
track. In this paper, vehicle tracking model considering dynamic occlusion state transformation and trajectory correlation model based
on road occlusion condition are constructed to achieve accurate vehicle tracking in different occlusion state. Firstly, a vehicle dynamic
occlusion model was established based on the improved Siam network, and the vehicle dynamic occlusion under the local occlusion
condition was analyzed. The tracking accuracy was improved by predicting the vehicle occlusion state. Secondly, a dynamic road
occlusion model was established to analyze the possible positions of the occluded vehicles, and the correlation between the new point
cloud and the interrupted trajectory in the sensing area was realized based on the point cloud similarity. Finally, the algorithm is verified

in the data set DAIR-V2X-I, and it is proved that the algorithm has accurate and continuous tracking effect under the conditions of no

occlusion, short-term occlusion and long-term occlusion.
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1. INTRODUCTION

In recent years, many countries have accelerated the
construction of intelligent transportation system(ITS). Accurate
positioning and tracking of vehicles is the basis for further
planning and control of ITS. However, with the popularity of
intelligent roadside devices, the application scenarios of
intelligent roadside devices have brought new challenges.
Traditional perception methods applied to vehicle sensors and
scenes cannot be well applied to roadside scenarios.(>

The range of roadside perception is fixed, which brings
advantages to perception, but also brings new problems. For the
sensor installed in the vehicle, its sensing range is dynamic.
When the vehicle enters its sensing range, the algorithm needs to
detect and track the vehicle in real time. When the vehicle is
blocked or the distance is too far for accurate detection, the
vehicle ID can be lost.® In other words, for vehicle sensor, it
only needs to continuously track the vehicles around self-vehicle
that can be accurately captured.”® When the vehicle target is lost
due to occlusion and other reasons, that is, the sensing range of
the vehicle sensor is temporarily reduced, and the algorithm still

only needs to accurately detect and track the target within the

dynamic sensing range.!” When the lost target enters the
perception range again, the perception algorithm can give it a
new tracking ID, and its historical track outside the dynamic
perception range will not interfere with the perception process of
the vehicle sensor.(!-1)

This problem is particularly prominent in urban intersections,
which are the first choice for the layout of intelligent roadside
infrastructure.(!¢!® The traffic flow within the intersection is
dense, and it is easy to see vehicle congestion and long-term
occlusion. Therefore, for the roadside sensors located in the
range of urban intersections, developing a new perception
algorithm to achieve continuous tracking of multi-target vehicles
after a long-term occlusion has become a new problem that needs
to be resolved urgently. (%22

In this paper, a vehicle dynamic occlusion model is proposed
to analyze the changing trend of vehicle occlusion state, so as to
track the local occlusion vehicle more conveniently. Furthermore,
a road area occupancy model considering occlusion relationship
is established to solve the vehicle track interruption problem

caused by complete occlusion.
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The main content of this paper is as follows. The second
section introduces the vehicle dynamic occlusion state analysis
model based on the improved Siamese network, which can
predict the vehicle occlusion state and improve the tracking
accuracy under local occlusion. The third section introduces the
correlation model of road occlusion and track, analyzes the road
dynamic occlusion area and the possible position of the occlusion
vehicle, and finally realizes the correlation between the interrupt
history trajectory and the new point cloud in the perception area
through the similarity calculation. In fourth section, DAIR-V2X-I
data set is used to verify the tracking effect of the algorithm
under different occlusion conditions. The fifth section is the

summary of the thesis.

2. VEHICLE TRACKING MODEL CONSIDERING
DYNAMIC OCCLUSION STATE TRANSFORMATION
In this part, we will mainly introduce two points, one is the

establishment of vehicle dynamic occlusion model; The second is
the multi-vehicle tracking algorithm based on the classical
siamese model.

2.1. Vehicle dynamic occlusion model

Firstly, we divided the vehicle occlusion state into five levels:
0%-20%, 21%-40%, 41%-60%, 61-80% and 81-100%. Among
them, 0%-20% indicates that the completeness of vehicle point
cloud is relatively high, and the vehicle does not seriously block
the field of view of the sensor. However, 81-100% indicated that
the completeness of vehicle point cloud was low, and the vehicle
completely blocked the field of vision of the sensor and could not
accurately perceive the surrounding environment.

We can judge the occlusion state of vehicles through the
vehicle point cloud data collected by sensors. Specifically, we
can divide vehicle point clouds into several small grids, and then
calculate the degree of completeness of point clouds in each
small grid, that is, the proportion of point clouds in the small grid
to the total number of point clouds. If the integrity degree of
point cloud in a small grid is lower than the threshold value, the
grid is considered to have vehicle occlusion; otherwise, it is
considered that there is no vehicle occlusion in the grid. Finally,
we can calculate the proportion of vehicle occlusion in all grids
to determine the occlusion state of vehicles.

The realization of this process mainly depends on the
classification algorithm in supervised learning. Specifically, the
occlusion state of vehicles can be divided into two categories:
occluded and unoccluded, and then a classification model can be

learned from historical data to predict the occlusion state of

future vehicles.
Suppose there are n samples, and each sample contains m
features and an occlusion status label y, the samples can be

represented as:

{1 D.(2 2)..C .y} (1

Where, xi is an m-dimensional vector, representing the
characteristics of the ith sample, and yi is a binary label,
representing the occlusioned state of the ith sample, which can be
0 or 1, respectively representing no occlusioned and occlusioned.

The classification model can be expressed as a function f that

maps the input feature vector to a binary classification label:
= () )

Where y is 0 or 1, indicating no or covered.

The training objective of the model is to minimize the
prediction error rate, and the cross entropy loss function can be
used:

()= [ log(C(C: N+@A- )
log(1— ( : NI ©)

Where, W is the parameter of the model, f(x;;w) is the
predicted value of the model for the ith sample, and yi is the real
label of this sample.

The stochastic gradient lower method can be used to solve the
optimal parameter w, so as to obtain a classification model with
high accuracy.

Specifically, the steps of stochastic gradient descent are as
follows: initialize the model parameter w; Randomly select a
sample x and corresponding label y from the training set, and
then calculate the gradient of the sample to the model parameters:

L(w; x,y) = [0L(w; X, y)/owl, oL(w; X, y)/
ow2, ..., 0L(w; x,y)/owm] (4)

Where, L(w;x,y) is the loss function, representing the
difference between the predicted value of the model on sample x
and the real label y. Then model parameters should be updated

according to the gradient:

= - V(;,) ®)

Where, a is the learning rate, which controls the step size of
each update.
2.2. Multi-vehicle tracking method based on Siamese network
Siamese network is a two-branch structure that is used to learn
similarities between features. Its basic structure can be expressed
as: input: point cloud cluster pair (I1, I12); output: similarity s.

Two-point cloud clusters I1 and [2 are input into two
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convolutional neural network (CNN) networks with the same
weight and structure, namely CNN1 and CNN2, to obtain two
feature vectors f1 and £2.¢4-9
f1 = CNN 1(I1)
f2 = CNN 2(12)

In Siamese network, CNN is used to extract image features,

(6)

and PointCNN is used to extract vehicle features in point cloud.
Next, we use the LSTM network to process the vehicle's
historical occlusion state information and predict the occlusion
state at future times. The details of this module have been
described in the previous section and will not be repeated in
detail here. The input of this module includes a series of
historical occlusion states h_t, such as occlusion ratio, occlusion
type, etc. The output of this module is mainly the occlusion state
p_t predicted by the vehicle in the future time. 9
Next, the predicted occlusion state p_t is fused with feature
vectors fl and f2. Here, we take the attention mechanism as an
example to achieve feature fusion. The input values are the
feature vectors f1, f2 and the predicted occlusion state p t. The
outputs are fusion feature vectors gl and g2. Then the weighted
sum of the feature vectors is performed using attention weights:
1=1 1+ _ (1A- 1), 2= 2 2+ _
Q-2 (7)

Among them, al and a2 are attention weights. Where, 1 and
2 are attention weights, which are calculated by Softmax

function.

Softmax () = e¥/ze( -) (8)

Input the attention scores al and a2 into the Softmax function
land 2.
1= eall(eal + e612)
2= eaZ/(eal + e612)

Next, we need to calculate the similarity s between the fused

to calculate

©)

feature vectors gl and g2. We use cosine similarity to calculate
the similarity between the two fused feature vectors.

s=(ol g2)/( 1 2 ) (10)

Among them - represents the magnitude of the vector.

In order to train the model, we need to define a loss function to
measure the difference between the model's prediction and the
real value. We use the comparative loss method to define the loss
value:

=05

s2+05@— )max(0, — )2 (11)

Where s represents similarity, label y represents vehicle status

(y=1 represents the same vehicle, y=0 represents different
vehicles), and m represents distance boundary.

Then we use Adam (Adaptive Moment Estimation) optimizer
to optimize the loss function through the gradient descent method
to update the network parameters.

First, we need to define some required hyperparameters,
learning_rate=0.001, beta_1=0.9, beta 2=0.999 and epsilon=1¢-8.
We then initialize the first and second moment variables, iterate
over each batch of data and update the parameters.

Finally, we calculate the similarity of point cloud clusters of
target vehicles on continuous frames to achieve vehicle tracking.
The specific steps are as follows:

a) Read the current frame point cloud, extract vehicle position
I t, and record the historical occlusion state h_t;

b) LSTM is used to predict the occlusion state p_t at future
time;

¢) Calculate the similarity s between the candidate vehicle
point cloud cluster I ¢ of the adjacent frame and the current
vehicle point cloud cluster. If s &gt; T (similarity threshold), it is
considered that the target vehicle is found, and I t is updated to
I candh_tis updated to jump out of the loop;

d) If the target vehicle is not found, update h_t and consider
increasing the threshold T.

Through the above steps, we can realize a vehicle tracking
system based on Siamese network, which can use the predicted
occlusion state of the vehicle in the future time to realize vehicle

tracking.

3. VEHICLE TRACKING MODEL CONSIDERING
DYNAMIC OCCLUSION STATE TRANSFORMATION
In this part, we will introduce the method of analyzing the

possible location of the occluded vehicle by using the road
occlusion state and realizing the correlation with the historical
interrupt trajectory.

First we need to initialize the shaded area of the road, which
can be represented as polygons or other geometric shapes. In this
paper, we represent it as a polygon, represented by the vertex set
V,where V={v 1,v 2,..v n}, v i=(x 1,y i) for each vertex.

Then we need to analyze the dynamic occlusion region caused
by the vehicle projection relationship. Firstly, the sensing range
R is set, indicating the maximum detection distance of the sensor.
Set the sensor position on the side to P_s=(x_s, y_s). For each
pair of tracking vehicles (i, j), the projection relationship between
them is analyzed. Calculate the vector D _i=p_i-p_s from sensor

to vehicle i, where P_i is the position of vehicle i. The vector D _j
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= p_j-p_s from the sensor to vehicle j is calculated, where P_j is
the position of vehicle j.(18-22)

Then we need to calculate the projection point P_proj and
judge whether the projection point P_proj is located near vehicle
j- If so, it is considered that vehicle i is blocked by vehicle j.

- = _ +( _ / 2) (12)

Next we need to set up a dynamic update model for the
occlusion area. First, the occlusion region is represented as A
geometric shape (such as polygons A and B). On the two-
dimensional plane, polygons A and B can be represented as a set
of vertices as A={P1 A, P2 A,.. , Pn A} and B={P1 B,
P2 B,..., Pm B}. Then the minimum distance dist min between
the projection point P_proj and the boundary of the occlusion
region is calculated. Using the formula for distance from point to
boundary:

dist_ min = min( distance(P_proj, Edge 1)) (13)

Determine whether the occlusion area needs to be updated
based on dist_min and preset threshold T _dist. If dist_min is less
than T_dist, the occlusion region needs to be merged or extended.
When updating the occlusion region, the boundary of the
occlusion region can be adjusted using geometric operations. We
achieve this effect by calculating the union of occluded regions A

and B:
Union( , )= (14)

Then we need to correlate the historical trajectory with the
emerging point cloud cluster. Firstly, the distance matrix D
between the new point cloud information C and the historical
trajectory H is calculated in the occlusion region. Each element
d ij represents the distance between the new point cloud
information ¢ i and the historical track h_j:

D =[d ij] (15)
| (16)

The distance matrix D is matched by the Hungarian algorithm.
Through this algorithm, the best matching relation M between the
new point cloud information and the historical trajectory can be
found. Then, according to the preset association threshold
T assoc, the matching results are filtered. If d ij is less than
T assoc, the matching result is accepted. Otherwise, the
matching result is rejected.

Then we extract vehicle feature F, including shape information
F_shape and dynamic information F_move. When associating
cloud information with historical

new point trajectory

information, the feature similarity matrix S is calculated. Each

element s_ij represents the characteristic similarity between the

new point cloud information ¢_i and the historical trajectory h_j:

=[-1 (17)

s_ij=w_color sim(F_move(c_i), F_move(h j)) +
w_shape sim(F_shape(c_i), F_shape(h_j)) (18)
Where, w_move and w_shape are the weights, and sim is the
feature cosine similarity measure. Then, the feature similarity
matrix S is combined with the distance matrix D to calculate the

comprehensive correlation matrix R:

=[-1] (19)
--) (20

Where, A is the weight between distance and feature similarity,
and the value range is [0, 1].

Then we need to define a threshold that can be adjusted
dynamically. Firstly adjust threshold(T, x) is defined as a
threshold adjustment function, where T is the original threshold
and x is the influencing factors (such as vehicle spacing, speed,
etc.). Then exponential function is used to represent the
relationship between vehicle spacing d and threshold T assoc:

T _assoc_adj = adjust_threshold(T _assoc, d) =
T assoc eCkd (21)

Where, k is a constant and represents the rate at which the
threshold changes with vehicle spacing. When associating new
point cloud information with historical track information, the
dynamically adjusted threshold T assoc_adj is used for screening.
If r ij is less than T assoc adj, the matching result is accepted.
Otherwise, the matching result is rejected.

In summary, by building a road occlusion model, the interrupt
trajectory can be accurately correlated with the newly emerged
point cloud cluster from the occlusion area, providing an
effective solution for road side perception of common occlusion

problems at the far end.

4. EXPERIMENTS

In this study, we used the public data set DAIR-V2X-I
released by Tsinghua University to verify our multi-vehicle
tracking algorithm. The DAIR-V2X-I dataset contains a large
number of road information in real traffic scenarios, including
vehicle location, speed, shape, color and other attributes. The
data set has complex occlusion conditions and is suitable for
verifying multi-vehicle tracking algorithms considering different

degree occlusion problems.
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In the experiment, we first preprocess the data set, extract the
relevant features and calculate the occlusion area. Then, the
extracted features and occlusion area information are input into
the multi-vehicle tracking algorithm designed by us. In the
algorithm, we consider the dynamic changes of the occlusion
region, and correlate the historical track information of the
interrupted perception region with the information of the new
point cloud in the occlusion region according to the possibility.
We also introduce dynamic threshold adjustment and matching
strategy of vehicle feature similarity to improve the accuracy and
robustness of the algorithm.

In order to evaluate the performance of our algorithm in
dealing with different degrees of occlusion, we use the accuracy
and precision to evaluate the algorithm in the experiment to show
the advantages of our algorithm in dealing with occlusion
problems. In the following part, we will present the quantitative
results of the experiment in detail to prove the effectiveness of
our multi-vehicle tracking algorithm in dealing with complex
occlusion conditions. At the same time, we will discuss the
limitations of the algorithm and possible improvements in the
future. The tracking effect of the proposed method in the
complex traffic environment at intersections is shown in the

figures below.
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Fig. 1. The complex traffic scenario at urban intersection.
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Fig. 2. The tracking effect of algorithm on complex traffic

scenario.

In order to better demonstrate the effect of the proposed
method in different tracking scenarios, occlusion cases are
divided into five categories: no occlusion (0s); partial occlusion
(0S); very short occlusion (1s); short-term occlusion (5s-10s);
long-time occlusion (over 10s).

Table 1 Algorithm tracking effect under different occlusion

cases.

Occlusion Evaluation indicators
time MOTA MOTP
0 94.86% 93.55%
0 (part) 87.15% 91.72%
< 5s (whole) 85.75% 84.92%
5s-10s (whole) 80.14% 82.95%
= 10s (whole) 82.45% 86.07%

It is not difficult to see from the above results that the scheme
proposed in this paper shows good tracking effect under different
occlusion conditions, no matter no occlusion scene, partial
occlusion scene or different length of full occlusion scene.
Among them, the occlusion form within the interval of 5s-10s is
usually caused by vehicle creep. Since the traffic flow density is
usually high in this scene, the occlusion tracking algorithm in this
scene has higher requirements. It can be seen from the results that
even in this scene, the method proposed in this paper still shows

a great tracking effect.

5. CONCLUSION

In this study, we propose an improved multi-vehicle tracking
algorithm based on Siamese network to optimize the complex
occlusion problem. Firstly, we designed an improved Siamese
network combined with vehicle occlusion state prediction to
improve vehicle tracking accuracy by learning the state
characteristics of vehicles in continuous moments. Then,
according to the position of the roadside sensor, we analyze the
possible occlusion area in the road, and consider the dynamic
change of the occlusion area. When associating historical track
information with new point cloud information, we introduced
dynamic threshold adjustment and vehicle feature similarity
matching to improve the accuracy and robustness of the
algorithm. Experimental verification on DAIR-V2X-I, a public
data set released by Tsinghua University, shows that our
algorithm shows good tracking performance under different
degrees of occlusion.
multi-vehicle shows

Although our tracking algorithm

advantages in dealing with complex occlusion problems, there
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are still several directions worth further research and
improvement:

1) Introduction of more prior information: In addition to
vehicle feature similarity and dynamic changes of occlusion area,
more prior information, such as lane information and intersection
layout, can be considered to improve the performance of the
tracking algorithm.

2) Online learning and model updating: In real-world scenarios,
road conditions and vehicle behavior may change. Therefore,
online learning and model updating methods can be studied so
that the algorithm can adapt to the changing environment.

3) Fusion of multi-source sensor data: Considering multi-
source sensor data, such as lidar, millimeter-wave radar and
camera, can further improve the robustness and accuracy of the
tracking algorithm.

4) Optimization of computing efficiency: For real-time
application scenarios, more efficient algorithm implementation
methods and computing platforms can be studied to reduce

computing delay and resource consumption.
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