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ABSTRACT: Accurate “Situational Awareness” is a key component for reliable decision-making in autonomous driving. Relying on 

only onboard sensor suites of individual AVs is not sufficient for this purpose, due to its inherent restrictions, like limited detection range 

and non-line-of-sight limitations. Therefore, to have a safe AV design having a framework that facilitates the collaboration among multiple 

connected AVs (CAVs) and jointly build up their scene understanding seems to be essential. In this work, we propose a novel framework 

by utilizing the capabilities of advanced 5G communication and edge-computing technologies. Additionally, our framework is capable of 

risk assessment and quantification that enables a clear characterization of the collaboration among CAVs and its impact on collision risk 

reduction and uncertainty. We further investigate the effectiveness of the proposed approach by utilizing real world data and 

postprocessing analysis. 
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1. INTRODUCTION 

Higher levels of autonomy in the context of ground vehicles are 

expected to gradually enhance the safety and comfort of drivers 

and passengers. It is well understood from various studies in the 

human factor domain that lowering the amount of human 

intervention and managing task sharing between humans and the 

automated systems result in a reduction of imposed cognitive 

workload on humans hence improved safety. To realize this, an 

automated agent first needs to have a reliable and accurate 

understanding of its surroundings and be able to precisely predict 

the scene evolution, due to the future actions of the effective actors, 

and then utilize this situational awareness to design its automated 

actions. Historically, the dominant approach in the leading 

automated vehicle (AV) research and industrial communities to 

build up and continuously update this situational awareness, which 

is essential for automated decision-making, has been based on 

designing sophisticated sensor suites to be installed on each 

autonomous vehicle. Although fused sensory information coming 

from cameras, lidars, and radars can cover the requirements to a 

good extent, this approach has some intrinsic limitations which 

decreases the accuracy of prediction and decision-making modules. 

These limitations are mostly due to the limited sensing range of 

onboard sensors, sensor blindness, and their non-line-of-sight 

restrictions. Therefore, only relying on sensory information of 

individual AVs cannot cover all critical situations and therefore, 

this information needs to be augmented with other additional 

information streams especially in urban areas in which obstructed 

views are likely to happen frequently. To address these challenges, 

the concept of collaborative scene understanding has been 

proposed and investigated as a promising alternative framework. 

In this framework the intelligent vehicles, which are referred to as 

CAVs (Connected and Autonomous Vehicles), can communicate 

their information, coordinate their maneuvers with each other, and 

fuse their on-board sensory data with the information they receive 

from the other CAVs’ through communication media. This will 

eventually result in a more comprehensive and accurate scene 

understanding. Any stream of information that comes from other 

CAVs can reveal some parts of the scene that might be hidden 

from the recipient if it only utilizes its onboard sensors.  

However, the collaborative scene understanding has its own 

challenges that need to be addressed. This paper is devoted to two 

major challenging aspects of this solution. First, we need to have 

a consistent framework to be able to measure the benefits of 

collaboration in terms of risk and uncertainty reduction. The 

second point is related to the communication aspect of the problem 

and tries to answer the question that how the information exchange 

procedure among a group of CAVs could be facilitated by utilizing 

a meaningful combination of communication and edge-

computation technologies. Due to potential high information 

demands of collaborative scene understanding methods, this is an 

extremely important and challenging point that needs to be 

investigated. 

In this paper, we briefly explain our solutions for each of these 

two aspects of the problem and try to clarify our system-level 
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perspective for a realizable collaborative scene understanding 

framework. Some parts of the proposed framework have been 

individually investigated in the past by our team at Honda 

Research Institute, US, and here we leverage those findings and 

lessons we have learned to propose a cohesive solution. Fig. 1 

illustrates a high-level schematic overview of collaborative 

sensing and risk mapping based on the 5G network. As it is shown 

in this figure, each CAV shares its sensory information through a 

5G network. Smart infrastructure could also share its sensory 

information in addition to its signal phase and timing. 

 

 

Fig. 1 System Architecture Schematic. 

2. COLLABORATIVE SENSING AND RISK 

ESTIMATION 

AVs are expected to have a precise understanding of their 

surroundings and be able to accurately estimate the risk of 

collision and continuously update these estimates, especially in 

challenging dynamic driving environments, to be able to surpass 

human drivers’ capabilities and provide higher levels of safety and 

comfort.  The notion of information exchange among CAVs, 

which is also referred to as Collaborative Sensing, could be a 

promising approach to reduce both collision risk and also risk 

uncertainty. This section provides a mathematical framework to 

assess and quantify these aspects of collaborative sensing schemes. 

Two main dominant risk assessment methods in the literature 

are based on either the worst-case assumption of full occupancy 

on the hidden zones [1], or the idealistic assumption of exact 

identification and tracking of all other actors in the scene [2, 3]. 

However, our method for risk assessment does not purely follow 

any of these approaches. Instead, we aim to come up with a more 

accurate risk estimation in the hidden zones, using a priori 

probabilities coming from the sensing history of the CAV’s sensor 

suite and what it is receiving from other CAVs. Our framework 

also provides the probability distribution of the estimated risk, 

which enables us to evaluate the risk uncertainty. This will further 

formalize the quantitative evaluation of the collaborative sensing 

impact on risk uncertainty reduction. To give the reader an idea 

about our method, our risk representation could be formulated as 

follows (Eq. 1): 

𝑅𝑘 =  ∑ 𝑝𝑜𝑐𝑐(𝑐, 𝑘). 𝑝𝑒𝑔𝑜 (𝑐, 𝑘). 𝐿(𝐗𝑒𝑔𝑜 , 𝐗𝑐 )

𝑐

                    (1) 

Here, we are dividing the environment into multiple cells and 𝑐 

is the cell index, 𝑝𝑜𝑐𝑐(𝑐, 𝑘) is the occupancy probability of cell 

𝑐 at time step 𝑘, 𝑝𝑒𝑔𝑜(𝑐, 𝑘) is the probability that ego car occupies 

cell 𝑐 at epoch 𝑘, and 𝐿(𝐗𝑒𝑔𝑜, 𝐗𝑐) is the loss function, while 𝐗𝑒𝑔𝑜 

and 𝐗𝑐 represent the ego vehicle and cell states, respectively (each 

one is a four-dimensional random vector, modeling two-

dimensional position and two-dimensional speed distributions). In 

this formulation, we assume different cells to be independent in 

terms of their occupancy probabilities. It is also important to 

emphasize that Eq. 1 is based on a commonly accepted definition 

of risk which is equivalent to the expected loss. We are defining 

our loss function based on kinetic energy. More specifically, the 

loss we are considering for cell 𝑐  due to collision could be 

formulated as: 

𝐿(𝐗𝑒𝑔𝑜 , 𝐗c  ) = 𝐶1‖𝒗𝑒𝑔𝑜 − 𝒗𝑐̅̅ ̅‖
2

+ 𝐶2𝐸[(𝒗𝑐 − 𝒗̅𝑐)2] 

where 𝒗𝑒𝑔𝑜 and 𝒗𝑐̅̅ ̅ are the expected velocity of the ego vehicle 

and the weighted mean of particle velocities in cell 𝑐, respectively. 

Also, 𝒗𝑐 in the second term, is the random variable of velocity in 

cell 𝑐, which is the state of this cell (𝑿𝑐) . The constants 

𝐶1 and 𝐶2 are design choices and in our case, they should be 

formed based on kinetic energy. So: 

𝐶1 = 𝑚𝑒𝑔𝑜𝑚𝑐/2(𝑚𝑒𝑔𝑜 + 𝑚𝑐) and 𝐶2 = 𝑚𝑐/ 2 

It is also noteworthy that the cell loss has to be normalized with 

respect to the discretization time interval and also cell area to make 

sure that the calculated risk isn’t sensitive to the discretization 

parameters choice. Following explanations also help to better 

clarify this formulation.  

In our framework, we inherited an object-free approach 

representation scheme. In this method, unlike the object-based 

method that assumes a specific class and appropriate category of 

motion model for each traffic actor, there is no need to determine 

the motion-model class for each actor, but instead, we need to 

estimate the cells occupancy in a grid map for short future time 

horizons. In this framework, an acceptable (safe) navigation exists 

only if we can find at least one trajectory passing through only 

unoccupied cells [4]. It is noteworthy that although we utilized the 

object-free scheme in our modeling, it is not a restrictive 

assumption and our method could be further expanded to object-

based representations, too. The mathematical tool we employ to 

model the occupancy of the environment is called the Probabilistic 
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Occupancy Map (POM), which, as we mentioned before, 

discretizes the map into a grid of cells and is capable of modeling 

the fused data received from multiple information sources. Note 

that in our framework this notion could be translated as if the 

sensory information is coming from multiple collaborating CAVs. 

For each cell in the grid, the occupancy is modeled via a binary 

Bernoulli random variable. Therefore, each cell is assumed to 

either be occupied with probability 𝑝 or empty with probability 

(1 − 𝑝).   POMs in general could be applied to dynamic 

environments. In this case, at each snapshot, they represent the 

instantaneous estimated occupancy status of each cell, conditioned 

on the measurement history. Bayesian Occupancy Filter (BOF) is 

then utilized to calculate the occupancy maps, which could be 

simpler than other methods, such as multi-target tracking. BOFs 

do not try to explicitly associate each sensor measurement to a 

specific detected object, but instead, they use measurements for 

updating the occupancy probabilities of cells. It should be noted 

here that BOFs assume that the grid cells are statistically 

independent and although this assumption might slightly reduce 

the accuracy, but its advantages, such as allowing the analytical 

representation and parallel updates of Bayesian update equations, 

can justify this accuracy reduction. In order to update the 

occupancy grid maps, a variety of particle filter tracking solutions 

are utilized based on the method proposed by Nuss, et al in [4], 

i.e., Probability Hypothesis Density/Multi-Instance Bernoulli 

(PHD/MIB) filter, which connects the dynamic grid cells 

occupancy state estimation problem to the well-established notion 

of finite-set statistics.  

 

Fig. 2 Equipped Honda Vehicles for Data Collection [5]. 

By explaining our techniques for collision risk evaluation and 

risk uncertainty modeling, which are capable of incorporating 

multiple data streams potentially coming from different 

collaborative CAVs, it becomes clear that how collaborative 

sensing reduces the risk uncertainty. For more details on our 

mathematical framework one can refer to our previous works such 

as [5]. We prototyped this claim by data collected using two 

equipped vehicles (Fig. 2) in an example scenario (Fig. 3). 

In this sample scenario the ego vehicle sensor suite is not able 

to directly detect the pedestrian due to the occlusion caused by the 

bus which is next to it. On the other hand, another vehicle (called 

collaborator vehicle) which is traveling on the other direction has 

much better view of the intersection area and is able to detect and 

track the pedestrian most of the time. Fig. 3 shows a birds-eye 

view snapshot from this scenario. Also, Fig. 4 shows two 

snapshots taken at the same moment, from ego vehicle and 

collaborator vehicle perspectives. 

Now, we consider two cases to compare in order to show the 

advantage of collaborative sensing concept. First, when ego 

vehicle can only access its own sensor suite information, and 

second when it can also benefit from the collaborator vehicle 

sensor information. A snapshot of the dynamic occupancy maps 

that could be built overtime using the sensor information of ego 

and collaborator vehicles in our collaborative sensing structure is 

shown in Fig. 5. Also, Fig. 6 depicts the actual and predicted 

accumulated risks under two different cases, i.e., with and without 

using the collaborative vehicle information. The risk and its 

uncertainty are clearly less under collaborative sensing set up.  

 

Fig. 3 Assessment of Collaborative Sensing in an Intersection 
Scenario [5]. 

 
Fig. 4 Scenario from ego vehicle and Collaborator vehicle points 

of view  
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Fig. 5 Snapshot of dynamic occupancy map built with sensor 

information of both vehicles [5]. 

 
Fig. 6 Accumulated risk (actual and predicted) with and without 

information sharing between ego and collaborative vehicles  

 
3. COLLABORATIVE SENSING AND 5G-MEC 

ARCHITECTURE 

As mentioned in the previous sections, in a collaborative 

sensing setup the sensory information is shared among a group of 

vehicles, either directly or via a smart middle layer infrastructure 

which potentially could also have computing capabilities. This 

shared multi-source information stream enables the vehicles and 

infrastructure to build up a more accurate estimate of the scene, 

especially, in dynamic scenes and for the zones that are in the blind 

spots of the sensor suites of individual vehicles. This more 

accurate scene understanding in turn facilitates the implementation 

of more advanced adaptive and cooperative applications, such as 

adaptive platooning [6], remote maneuvering, and cloud-based 

fully automated driving. However, the challenge here is that 

sharing the raw sensor information is a high-demand solution in 

terms of both required communication resources (such as 

bandwidth and latency) and, also computational power, especially 

in dense multi-agent scenes. 

There are several resource management strategies and solutions 

introduced in the literature (e.g., [7], [8]). [7] proposes novel 

solutions for communication resource demand reduction while [8] 

focuses on efficient methods of computation resource allocation, 

for instance by preprocessing the sensory data at the transmitter 

and then sharing this processed information (e.g., the final output 

of the perception stack). Also, as an alternative way to approach 

the problem of collaborative scene understanding, infrastructure 

technologies have been investigated. This concept relies on smart 

infrastructures with sensing and communication capabilities, 

instead of sharing only the vehicles’ onboard sensory data. [9] 

introduces an early deployment solution to improve situational 

awareness and information exchange among road users and 

discusses the technical challenges associated with this concept and 

provides solutions to tackle these challenges. The technological 

solution introduced in this paper, however, is mainly based on 

utilizing capable (high bandwidth and low latency) 

communication technologies, such as 5G, along with integrating 

the edge computing solutions in the framework, to be able to 

address the requirements of these high demand use cases. 

Currently, 5G is the most advanced deployed communication 

technology which offers the potential to address the demanding 

requirements of the emerging use cases for the collaborative scene 

understanding framework [10]. During the last twenty years, Wi-

Fi-based (IEEE 802.11p) and cellular-based (C-V2X) RATs 

(Radio Access Technologies) have been two main enablers of 

V2X communications in the US, each with its advantages and 

disadvantages. 5G NR-V2X, which has been proposed by 3GPP 

as part of its Release 16 specifications, could be categorized as part 

of the C-V2X framework and is the rational evolution of its 

predecessors in the family of vehicular communications 

technologies. However, it has some essential uniqueness 

compared to previous C-V2X technologies such as a) enhanced 

Mobile Broadband (eMBB), b) massive Machine Type 

Communications (mMTC), and c) Ultra-Reliable and Low-

Latency Communications (URLLC). The last item in this list is the 

core enabler of the advanced high-demand V2X use cases, but 

nevertheless, the other two factors are also very critical for this 

technology. Previous variants of C-V2X have not been considered 

seriously for automotive safety-critical use cases mostly due to the 

high bandwidth, reliability, and latency requirements. However, 

5G technology, especially in the C-Band, potentially can address 

the bandwidth, and reliability demands, and also to some extent 

provide reasonable latency, and therefore, we see it as a feasible 

option to be included in our framework.  
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In addition to 5G as our choice for the radio-level technique, 

the framework could also be further improved by adding advanced 

network-level technologies such as Edge-computing techniques. 

Mobile Edge Computing (MEC), which is the evolutionary variant 

of Mobile Cloud Computing (MCC) technology, offloads the 

computational demands from the vehicles to the edge devices. 

Therefore, it is a promising technology to enhance the overall 

performance of the 5G-enabled application and also decrease the 

in-vehicle resource requirements, which in turn would potentially 

lead to a notable cost reduction in scale, an attractive element for 

AV manufacturers and an important consideration for the AD 

generalization roadmap.  

In our framework, we have tried two different configurations in 

terms of the data flow between the vehicles and the MEC. In the 

first configuration, the computation burden is shared between the 

vehicles and the MEC to further reduce the uplink communication 

latency. More specifically, each CAV tries to conduct some post-

processing to detect the non-CAV objects (including vehicles, 

motorcycles, and pedestrians) that are being captured by its sensor 

suite and then shares these detected objects with the MEC. MEC 

receives this information from different CAVs, runs its risk 

estimation logics, and then shares the outputs, in the form of direct 

warnings and/or more abstract pieces of information such as risk 

estimations, with CAVs. This configuration reduces the uplink 

latency but needs more computational power on the CAV side. In 

the second configuration, CAVs directly share their raw sensory 

information, e.g., lidar point clouds with the MEC, MEC then runs 

the post-processing for object detection and afterward runs its risk 

estimation logic, similar to the previous configuration. Obviously, 

this option adds more latency to the uplink but reduces the required 

computational capabilities for CAVs. Fig. 7 shows a schematic of 

these two configurations, along with the latency results we 

observed in our tests for these two configurations. Following 

paragraphs provide more details on the hardware and software 

parts of our experiments. 

In terms of the hardware, we used a Jackal Autonomous Mobile 

Robot (AMR) platform, developed by Clearpath Robotics in our 

tests. This Jackal robot was representing the vehicle. It should be 

mentioned here that since this Jackal platform had the identical on-

board sensor-suite as a normal test car, replacing the test car with 

this robot did not affect the validity of our experiments. The sensor 

suite installed on the Jackal included a 5G UW modem (Telit 

FT980m) in addition to a top-mounted 360-degree 3D LiDAR 

(Velodyne HDL-32e). In order to simulate the other vehicle, we 

utilized a high performance gaming laptop, equipped with a 5G 

UW modem (Inseego MiFi M2100), as a part of the collaborative 

perception environment. This laptop was also used to visualize the 

incoming streams from the AMR and MEC.  

The software set up to facilitate the stream of sensor 

information between the AMR, MEC and visualization PC was 

based on the Robot Operating System (ROS). In addition, a 

modified OEM built Velodyne’s LiDAR processing packages 

utilized in our tests. The modifications were mostly applied  in 

order to reduce the required bandwidth over a ROS topic, and also 

to leverage MEC’s compute resources more efficiently. Also, it is 

noteworthy that I order to reduce the LIDAR bandwidth 

requirements, only the raw, unconstructed data was uploaded and 

instead of sending the data-rich PointCloud2 ROS messages. In 

this way we were able to reduce the LiDAR bandwidth 

requirements by a factor of 10. Another important point is that 

since initiating connections over multiple ports on the client by 

MEC is disabled on Verizon’s public network by default to prevent 

spam callers and unwanted data usage, and having these 

connections among MEC, Jackal, and visualization PC was a 

requirement in our set up, we had to establish a VPN server hosted 

on the MEC to enable individual clients to connect to the MEC 

through secure tunnels. An algorithm based on center point 

[11] with SECOND [12] was chosen in our framework for 

LiDAR object detection. This choice was due to its faster 

execution than the required 100ms time frame on the 

MEC’s GPUs. We tuned this algorithm in our set up to be 

able to recognize pedestrians and vehicles. It aslo should be 

mentioned that we utilized Verizon’s public MEC for this 

trial which is located in Wall, NJ. 

 

 

Fig. 7 Schematic Diagram for the Two CAV-MEC Connection 
Configurations 

In Fig. 8, one can see a more clear break down of tbe 

delays in different stages of our set up, for the case that 

LIDAR raw data was being sent to the cloud. This set up 
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has higher uplink latency compared to our other 

configuration where processsed LIDAR data was being sent 

to the MEC. The main conclusion from this study is that the 

proposed architecture in this work seems to be feasible to 

be deployed using commercial 5G/MEC infrastructures. 

 

Fig. 8 Latency break down for different stages in our proposed 
architecture 

 
4. CONCLUSION 

In this paper, we propose a novel collaborative scene 

understanding scheme which incorporates the 5G communications 

and Mobile Edge Computing technologies as its two main pillars 

to enhance situational awareness. In addition, a risk quantification 

method has been integrated in this framework which works based 

on Bayesian Occupancy Filters concept, augmented with a 

collision loss function. Incorporating this risk estimation block in 

our framework, allows us to study and quantify the effect of 

collaborative sensing on both risk reduction and risk uncertainty 

reduction. Real world data and risk analysis are used to support the 

claims and quantify the value and feasibility of this solution.  

 
REFERENCES 

(1) Stefan Hoermann, Felix Kunz, Dominik Nuss, Stephan 

Renter, and Klaus Dietmayer, “Entering crossroads with 

blind corners. a safe strategy for autonomous vehicles,” in 

2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, 

2017, pp. 727–732. 

(2) Adrian Broadhurst, Simon Baker, and Takeo Kanade, 

“Montecarlo road safety reasoning,” in IEEE Proceedings. 

Intelligent Vehicles Symposium, 2005. IEEE, 2005, pp. 

319–324. 

(3) Matthias Althoff, Olaf Stursberg, and Martin Buss, 

“Modelbased probabilistic collision detection in 

autonomous driving”, IEEE Transactions on Intelligent 

Transportation Systems, vol. 10, no. 2, pp. 299–310, 2009. 

(4) D. Nuss, et al., “A Random Finite Set Approach for 

Dynamic Occupancy Grid Maps with Real-Time 

Application,” The International Journal of Robotics 

Research, vol. 37, no. 8, pp. 841–866, 2018. 

(5) D. LaChapelle, T. Humphreys, L. Narula, P. Iannucci and 

E. Moradi-Pari, "Automotive Collision Risk Estimation 

Under Cooperative Sensing," ICASSP 2020 - 2020 IEEE 

International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), Barcelona, Spain, 2020, pp. 9200-

9204, doi: 10.1109/ICASSP40776.2020.9053745. 

(6) Meier, J.N.; Kailas, A.; Adla, R.; Bitar, G.; Moradi-Pari, E.; 

Abuchaar, O.; Ali, M.; Abubakr, M.; Deering, R.; Ibrahim, 

U.; et al. “Implementation and evaluation of cooperative 

adaptive cruise control functionalities”, IET Intell. 

Transport. Syst. 2018, 12, 1110–1115. 

(7) E. Emad, et al., “Feature Sharing and Integration for 

Cooperative Cognition and Perception with Volumetric 

Sensors.” ArXiv abs/2011.08317 (2020). 

(8) B. Dai, et al., "Hybrid Sensing Data Fusion of Cooperative 

Perception for Autonomous Driving with Augmented 

Vehicular Reality," IEEE Systems Journal, vol. 15, no. 1, pp. 

1413-1422, March 2021 

(9) E. Moradi-Pari, et al., "The Smart Intersection: A Solution 

to Early-Stage Vehicle-to-Everything Deployment," IEEE 

Intelligent Transportation Systems Magazine, vol. 14, no. 5, 

pp. 88-102, Sept.-Oct. 2022 

(10) W. Zheng, A. Ali, N. González-Prelcic, R. W. Heath, A. 

Klautau and E. M. Pari, "5G V2X communication at 

millimeter wave: rate maps and use cases," 2020 IEEE 91st 

Vehicular Technology Conference (VTC2020-Spring), 

Antwerp, Belgium, 2020, pp. 1-5, doi: 10.1109/VTC2020-

Spring48590.2020.9128612. 

(11) Tianwei Yin, Xingyi Zhou, Philipp Krahenbuhl, “Center-

Based 3D Object Detection and Tracking”, Proceedings of 

the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR), 2021, pp. 11784-11793 

(12) Yan, Yan, Yuxing Mao, and Bo Li. "Second: Sparsely 

embedded convolutional detection." Sensors 18.10 (2018): 

3337. 

 

 




