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ABSTRACT: Roadside perception requires continuous tracking of vehicles in a fixed perception area. Traffic at city intersections is

dense and easy to jam. Traffic lights and traffic jams also significantly lengthen occlusion times, making it harder for roadside sensors to

track. In this paper, vehicle tracking model considering dynamic occlusion state transformation and trajectory correlation model based

on road occlusion condition are constructed to achieve accurate vehicle tracking in different occlusion state. Firstly, a vehicle dynamic

occlusion model was established based on the improved Siam network, and the vehicle dynamic occlusion under the local occlusion

condition was analyzed. The tracking accuracy was improved by predicting the vehicle occlusion state. Secondly, a dynamic road

occlusion model was established to analyze the possible positions of the occluded vehicles, and the correlation between the new point

cloud and the interrupted trajectory in the sensing area was realized based on the point cloud similarity. Finally, the algorithm is verified

in the data set DAIR-V2X-I, and it is proved that the algorithm has accurate and continuous tracking effect under the conditions of no

occlusion, short-term occlusion and long-term occlusion.
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1. INTRODUCTION

In recent years, many countries have accelerated the

construction of intelligent transportation system(ITS). Accurate

positioning and tracking of vehicles is the basis for further

planning and control of ITS. However, with the popularity of

intelligent roadside devices, the application scenarios of

intelligent roadside devices have brought new challenges.

Traditional perception methods applied to vehicle sensors and

scenes cannot be well applied to roadside scenarios.(1-5)

The range of roadside perception is fixed, which brings

advantages to perception, but also brings new problems. For the

sensor installed in the vehicle, its sensing range is dynamic.

When the vehicle enters its sensing range, the algorithm needs to

detect and track the vehicle in real time. When the vehicle is

blocked or the distance is too far for accurate detection, the

vehicle ID can be lost.(6-8) In other words, for vehicle sensor, it

only needs to continuously track the vehicles around self-vehicle

that can be accurately captured.(9) When the vehicle target is lost

due to occlusion and other reasons, that is, the sensing range of

the vehicle sensor is temporarily reduced, and the algorithm still

only needs to accurately detect and track the target within the

dynamic sensing range.(10) When the lost target enters the

perception range again, the perception algorithm can give it a

new tracking ID, and its historical track outside the dynamic

perception range will not interfere with the perception process of

the vehicle sensor.(11-15)

This problem is particularly prominent in urban intersections,

which are the first choice for the layout of intelligent roadside

infrastructure.(16-18) The traffic flow within the intersection is

dense, and it is easy to see vehicle congestion and long-term

occlusion. Therefore, for the roadside sensors located in the

range of urban intersections, developing a new perception

algorithm to achieve continuous tracking of multi-target vehicles

after a long-term occlusion has become a new problem that needs

to be resolved urgently.(19-22)

In this paper, a vehicle dynamic occlusion model is proposed

to analyze the changing trend of vehicle occlusion state, so as to

track the local occlusion vehicle more conveniently. Furthermore,

a road area occupancy model considering occlusion relationship

is established to solve the vehicle track interruption problem

caused by complete occlusion.
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The main content of this paper is as follows. The second

section introduces the vehicle dynamic occlusion state analysis

model based on the improved Siamese network, which can

predict the vehicle occlusion state and improve the tracking

accuracy under local occlusion. The third section introduces the

correlation model of road occlusion and track, analyzes the road

dynamic occlusion area and the possible position of the occlusion

vehicle, and finally realizes the correlation between the interrupt

history trajectory and the new point cloud in the perception area

through the similarity calculation. In fourth section, DAIR-V2X-I

data set is used to verify the tracking effect of the algorithm

under different occlusion conditions. The fifth section is the

summary of the thesis.

2. VEHICLE TRACKING MODEL CONSIDERING

DYNAMIC OCCLUSION STATE TRANSFORMATION

In this part, we will mainly introduce two points, one is the

establishment of vehicle dynamic occlusion model; The second is

the multi-vehicle tracking algorithm based on the classical

siamese model.

2.1. Vehicle dynamic occlusion model

Firstly, we divided the vehicle occlusion state into five levels:

0%-20%, 21%-40%, 41%-60%, 61-80% and 81-100%. Among

them, 0%-20% indicates that the completeness of vehicle point

cloud is relatively high, and the vehicle does not seriously block

the field of view of the sensor. However, 81-100% indicated that

the completeness of vehicle point cloud was low, and the vehicle

completely blocked the field of vision of the sensor and could not

accurately perceive the surrounding environment.

We can judge the occlusion state of vehicles through the

vehicle point cloud data collected by sensors. Specifically, we

can divide vehicle point clouds into several small grids, and then

calculate the degree of completeness of point clouds in each

small grid, that is, the proportion of point clouds in the small grid

to the total number of point clouds. If the integrity degree of

point cloud in a small grid is lower than the threshold value, the

grid is considered to have vehicle occlusion; otherwise, it is

considered that there is no vehicle occlusion in the grid. Finally,

we can calculate the proportion of vehicle occlusion in all grids

to determine the occlusion state of vehicles.

The realization of this process mainly depends on the

classification algorithm in supervised learning. Specifically, the

occlusion state of vehicles can be divided into two categories:

occluded and unoccluded, and then a classification model can be

learned from historical data to predict the occlusion state of

future vehicles.

Suppose there are n samples, and each sample contains m

features and an occlusion status label y, the samples can be

represented as:

{(�1, �1), (�2, �2), …, (��, yn)} (1)

Where, xi is an m-dimensional vector, representing the

characteristics of the ith sample, and yi is a binary label,

representing the occlusioned state of the ith sample, which can be

0 or 1, respectively representing no occlusioned and occlusioned.

The classification model can be expressed as a function f that

maps the input feature vector to a binary classification label:

� = �(�) (2)

Where y is 0 or 1, indicating no or covered.

The training objective of the model is to minimize the

prediction error rate, and the cross entropy loss function can be

used:

�(�) =− 1/� ∗ Σ[�� ∗ log (�(��; �)) + (1 − ��) ∗
log (1 − �(��; �))] (3)

Where, w is the parameter of the model, f(xi; w) is the

predicted value of the model for the ith sample, and yi is the real

label of this sample.

The stochastic gradient lower method can be used to solve the

optimal parameter w, so as to obtain a classification model with

high accuracy.

Specifically, the steps of stochastic gradient descent are as

follows: initialize the model parameter w; Randomly select a

sample x and corresponding label y from the training set, and

then calculate the gradient of the sample to the model parameters:

∇L(w; x, y) = [∂L(w; x, y)/∂w1, ∂L(w; x, y)/
∂w2, …, ∂L(w; x, y)/∂wm] (4)

Where, L(w;x,y) is the loss function, representing the

difference between the predicted value of the model on sample x

and the real label y. Then model parameters should be updated

according to the gradient:

� = � − �∗∇�(�; �, �) (5)

Where, α is the learning rate, which controls the step size of

each update.

2.2. Multi-vehicle tracking method based on Siamese network

Siamese network is a two-branch structure that is used to learn

similarities between features. Its basic structure can be expressed

as: input: point cloud cluster pair (I1, I2); output: similarity s.

Two-point cloud clusters I1 and I2 are input into two
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convolutional neural network (CNN) networks with the same

weight and structure, namely CNN1 and CNN2, to obtain two

feature vectors f1 and f2.(4-6)

f1 = CNN 1(I1)
f2 = CNN 2(I2)

(6)

In Siamese network, CNN is used to extract image features,

and PointCNN is used to extract vehicle features in point cloud.

Next, we use the LSTM network to process the vehicle's

historical occlusion state information and predict the occlusion

state at future times. The details of this module have been

described in the previous section and will not be repeated in

detail here. The input of this module includes a series of

historical occlusion states h_t, such as occlusion ratio, occlusion

type, etc. The output of this module is mainly the occlusion state

p_t predicted by the vehicle in the future time.(8-9)

Next, the predicted occlusion state p_t is fused with feature

vectors f1 and f2. Here, we take the attention mechanism as an

example to achieve feature fusion. The input values are the

feature vectors f1, f2 and the predicted occlusion state p_t. The

outputs are fusion feature vectors g1 and g2. Then the weighted

sum of the feature vectors is performed using attention weights:

�1 = �1 ∗ �1 + �−� ∗ (1 − �1), �2 = �2 ∗ �2 + �−� ∗
(1 − �2) (7)

Among them, α1 and α2 are attention weights. Where, �1 and

�2 are attention weights, which are calculated by Softmax

function.

Softmax (�) = ea/Σe �_� (8)

Input the attention scores a1 and a2 into the Softmax function

to calculate �1 and �2.

�1 = ea1/(ea1 + ea2)
�2 = ea2/(ea1 + ea2)

(9)

Next, we need to calculate the similarity s between the fused

feature vectors g1 and g2. We use cosine similarity to calculate

the similarity between the two fused feature vectors.

s = (g1 ⋅ g2)/( ∥ �1 ∥∥ �2 ∥ ) (10)

Among them ∥∙∥ represents the magnitude of the vector.
In order to train the model, we need to define a loss function to

measure the difference between the model's prediction and the

real value. We use the comparative loss method to define the loss

value:

� = 0.5∗�∗ s∧2 + 0.5∗(1 − �)∗max(0, � − �)∧2 (11)

Where s represents similarity, label y represents vehicle status

(y=1 represents the same vehicle, y=0 represents different

vehicles), and m represents distance boundary.

Then we use Adam (Adaptive Moment Estimation) optimizer

to optimize the loss function through the gradient descent method

to update the network parameters.

First, we need to define some required hyperparameters,

learning_rate=0.001, beta_1=0.9, beta_2=0.999 and epsilon=1e-8.

We then initialize the first and second moment variables, iterate

over each batch of data and update the parameters.

Finally, we calculate the similarity of point cloud clusters of

target vehicles on continuous frames to achieve vehicle tracking.

The specific steps are as follows:

a) Read the current frame point cloud, extract vehicle position

I_t, and record the historical occlusion state h_t;

b) LSTM is used to predict the occlusion state p_t at future

time;

c) Calculate the similarity s between the candidate vehicle

point cloud cluster I_c of the adjacent frame and the current

vehicle point cloud cluster. If s &gt; T (similarity threshold), it is

considered that the target vehicle is found, and I_t is updated to

I_c and h_t is updated to jump out of the loop;

d) If the target vehicle is not found, update h_t and consider

increasing the threshold T.

Through the above steps, we can realize a vehicle tracking

system based on Siamese network, which can use the predicted

occlusion state of the vehicle in the future time to realize vehicle

tracking.

3. VEHICLE TRACKING MODEL CONSIDERING

DYNAMIC OCCLUSION STATE TRANSFORMATION

In this part, we will introduce the method of analyzing the

possible location of the occluded vehicle by using the road

occlusion state and realizing the correlation with the historical

interrupt trajectory.

First we need to initialize the shaded area of the road, which

can be represented as polygons or other geometric shapes. In this

paper, we represent it as a polygon, represented by the vertex set

V, where V = {v_1, v_2,... v_n}, v_i = (x_i, y_i) for each vertex.

Then we need to analyze the dynamic occlusion region caused

by the vehicle projection relationship. Firstly, the sensing range

R is set, indicating the maximum detection distance of the sensor.

Set the sensor position on the side to P_s=(x_s, y_s). For each

pair of tracking vehicles (i, j), the projection relationship between

them is analyzed. Calculate the vector D_i = p_i-p_s from sensor

to vehicle i, where P_i is the position of vehicle i. The vector D_j
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= p_j-p_s from the sensor to vehicle j is calculated, where P_j is

the position of vehicle j.(18-22)

Then we need to calculate the projection point P_proj and

judge whether the projection point P_proj is located near vehicle

j. If so, it is considered that vehicle i is blocked by vehicle j.

�−���� = �−� + �−� ⋅ ��/∥ ��∥∧2 ∗ ∗� (12)

Next we need to set up a dynamic update model for the

occlusion area. First, the occlusion region is represented as A

geometric shape (such as polygons A and B). On the two-

dimensional plane, polygons A and B can be represented as a set

of vertices as A={P1_A, P2_A,... , Pn_A} and B={P1_B,

P2_B,... , Pm_B}. Then the minimum distance dist_min between

the projection point P_proj and the boundary of the occlusion

region is calculated. Using the formula for distance from point to

boundary:

dist_min = min( distance(P_proj, Edge_i)) (13)

Determine whether the occlusion area needs to be updated

based on dist_min and preset threshold T_dist. If dist_min is less

than T_dist, the occlusion region needs to be merged or extended.

When updating the occlusion region, the boundary of the

occlusion region can be adjusted using geometric operations. We

achieve this effect by calculating the union of occluded regions A

and B:

Union (�, �) = � ∪ � (14)

Then we need to correlate the historical trajectory with the

emerging point cloud cluster. Firstly, the distance matrix D

between the new point cloud information C and the historical

trajectory H is calculated in the occlusion region. Each element

d_ij represents the distance between the new point cloud

information c_i and the historical track h_j:

D = [d_ij] (15)

�−�� = �−� − ℎ� (16)
The distance matrix D is matched by the Hungarian algorithm.

Through this algorithm, the best matching relation M between the

new point cloud information and the historical trajectory can be

found. Then, according to the preset association threshold

T_assoc, the matching results are filtered. If d_ij is less than

T_assoc, the matching result is accepted. Otherwise, the

matching result is rejected.

Then we extract vehicle feature F, including shape information

F_shape and dynamic information F_move. When associating

new point cloud information with historical trajectory

information, the feature similarity matrix S is calculated. Each

element s_ij represents the characteristic similarity between the

new point cloud information c_i and the historical trajectory h_j:

� = �−�� (17)

s_ij = w_color ∗ sim(F_move(c_i), F_move(h_j)) +
w_shape ∗ sim(F_shape(c_i), F_shape(h_j)) (18)

Where, w_move and w_shape are the weights, and sim is the

feature cosine similarity measure. Then, the feature similarity

matrix S is combined with the distance matrix D to calculate the

comprehensive correlation matrix R:

� = �−�� (19)

�−�� = � ∗ �−�� + (1 − �) ∗ 1 − �−�� (20)

Where, λ is the weight between distance and feature similarity,

and the value range is [0, 1].

Then we need to define a threshold that can be adjusted

dynamically. Firstly adjust_threshold(T, x) is defined as a

threshold adjustment function, where T is the original threshold

and x is the influencing factors (such as vehicle spacing, speed,

etc.). Then exponential function is used to represent the

relationship between vehicle spacing d and threshold T_assoc:

T_assoc_adj = adjust_threshold(T_assoc, d) =
T_assoc ∗ e(−k∗d) (21)

Where, k is a constant and represents the rate at which the

threshold changes with vehicle spacing. When associating new

point cloud information with historical track information, the

dynamically adjusted threshold T_assoc_adj is used for screening.

If r_ij is less than T_assoc_adj, the matching result is accepted.

Otherwise, the matching result is rejected.

In summary, by building a road occlusion model, the interrupt

trajectory can be accurately correlated with the newly emerged

point cloud cluster from the occlusion area, providing an

effective solution for road side perception of common occlusion

problems at the far end.

4. EXPERIMENTS

In this study, we used the public data set DAIR-V2X-I

released by Tsinghua University to verify our multi-vehicle

tracking algorithm. The DAIR-V2X-I dataset contains a large

number of road information in real traffic scenarios, including

vehicle location, speed, shape, color and other attributes. The

data set has complex occlusion conditions and is suitable for

verifying multi-vehicle tracking algorithms considering different

degree occlusion problems.
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In the experiment, we first preprocess the data set, extract the

relevant features and calculate the occlusion area. Then, the

extracted features and occlusion area information are input into

the multi-vehicle tracking algorithm designed by us. In the

algorithm, we consider the dynamic changes of the occlusion

region, and correlate the historical track information of the

interrupted perception region with the information of the new

point cloud in the occlusion region according to the possibility.

We also introduce dynamic threshold adjustment and matching

strategy of vehicle feature similarity to improve the accuracy and

robustness of the algorithm.

In order to evaluate the performance of our algorithm in

dealing with different degrees of occlusion, we use the accuracy

and precision to evaluate the algorithm in the experiment to show

the advantages of our algorithm in dealing with occlusion

problems. In the following part, we will present the quantitative

results of the experiment in detail to prove the effectiveness of

our multi-vehicle tracking algorithm in dealing with complex

occlusion conditions. At the same time, we will discuss the

limitations of the algorithm and possible improvements in the

future. The tracking effect of the proposed method in the

complex traffic environment at intersections is shown in the

figures below.

Fig. 1. The complex traffic scenario at urban intersection.

Fig. 2. The tracking effect of algorithm on complex traffic

scenario.

In order to better demonstrate the effect of the proposed

method in different tracking scenarios, occlusion cases are

divided into five categories: no occlusion (0s); partial occlusion

(0S); very short occlusion (1s); short-term occlusion (5s-10s);

long-time occlusion (over 10s).

Table 1 Algorithm tracking effect under different occlusion

cases.

Occlusion
time

Evaluation indicators
MOTA MOTP

0 94.86% 93.55%

0 (part) 87.15% 91.72%

≤ 5s (whole) 85.75% 84.92%

5s-10s (whole) 80.14% 82.95%

≥ 10s (whole) 82.45% 86.07%

It is not difficult to see from the above results that the scheme

proposed in this paper shows good tracking effect under different

occlusion conditions, no matter no occlusion scene, partial

occlusion scene or different length of full occlusion scene.

Among them, the occlusion form within the interval of 5s-10s is

usually caused by vehicle creep. Since the traffic flow density is

usually high in this scene, the occlusion tracking algorithm in this

scene has higher requirements. It can be seen from the results that

even in this scene, the method proposed in this paper still shows

a great tracking effect.

5. CONCLUSION

In this study, we propose an improved multi-vehicle tracking

algorithm based on Siamese network to optimize the complex

occlusion problem. Firstly, we designed an improved Siamese

network combined with vehicle occlusion state prediction to

improve vehicle tracking accuracy by learning the state

characteristics of vehicles in continuous moments. Then,

according to the position of the roadside sensor, we analyze the

possible occlusion area in the road, and consider the dynamic

change of the occlusion area. When associating historical track

information with new point cloud information, we introduced

dynamic threshold adjustment and vehicle feature similarity

matching to improve the accuracy and robustness of the

algorithm. Experimental verification on DAIR-V2X-I, a public

data set released by Tsinghua University, shows that our

algorithm shows good tracking performance under different

degrees of occlusion.

Although our multi-vehicle tracking algorithm shows

advantages in dealing with complex occlusion problems, there
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are still several directions worth further research and

improvement:

1) Introduction of more prior information: In addition to

vehicle feature similarity and dynamic changes of occlusion area,

more prior information, such as lane information and intersection

layout, can be considered to improve the performance of the

tracking algorithm.

2) Online learning and model updating: In real-world scenarios,

road conditions and vehicle behavior may change. Therefore,

online learning and model updating methods can be studied so

that the algorithm can adapt to the changing environment.

3) Fusion of multi-source sensor data: Considering multi-

source sensor data, such as lidar, millimeter-wave radar and

camera, can further improve the robustness and accuracy of the

tracking algorithm.

4) Optimization of computing efficiency: For real-time

application scenarios, more efficient algorithm implementation

methods and computing platforms can be studied to reduce

computing delay and resource consumption.
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